Nano Research

, Volume 4, Issue 4, pp 343–359 | Cite as

Photoluminescence of CdSe nanowires grown with and without metal catalyst

  • Andrea Fasoli
  • Alan Colli
  • Faustino Martelli
  • Simone Pisana
  • Ping Heng Tan
  • Andrea C. Ferrari
Research Article


We present temperature and power dependent photoluminescence measurements on CdSe nanowires synthesized via vapor-phase with and without the use of a metal catalyst. Nanowires produced without a catalyst can be optimized to yield higher quantum efficiency, and narrower and spatially uniform emission, when compared to the catalyst-assisted ones. Emission at energies lower than the band-edge is also found in both cases. By combining spatially-resolved photoluminescence and electron microscopy on the same nanowires, we show that catalyst-free nanowires exhibit a low-energy peak with sharp phonon replica, whereas for catalyst-assisted nanowires low-energy emission is linked to the presence of nanostructures with extended morphological defects.


CdSe nanowires photoluminescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2010_89_MOESM1_ESM.pdf (921 kb)
Supplementary material, approximately 340 KB.


  1. [1]
    Pauzauskie, P. J.; Yang, P. Nanowire photonics. Mater. Today 2006, 9, 36–45.CrossRefGoogle Scholar
  2. [2]
    Li, Y.; Qian, F.; Xiang, J.; Lieber, C. M. Nanowire electronic and optoelectronic devices. Mater. Today 2006, 9, 18–27.CrossRefGoogle Scholar
  3. [3]
    Yang, P.; Yan, R.; Fardy, M. Semiconductor nanowire: What’s next? Nano Lett. 2010, 10, 1529–1536.CrossRefGoogle Scholar
  4. [4]
    Gur, I.; Fromer, N. A.; Chen, C. -P.; Kanaras, A. G.; Alivisatos, A. P. Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals. Nano Lett. 2007, 7, 409–414.CrossRefGoogle Scholar
  5. [5]
    Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459.CrossRefGoogle Scholar
  6. [6]
    Huang, Y.; Duan, X.; Lieber, C. M. Nanowires for integrated multicolor nanophotonics. Small 2005, 1, 142–147.CrossRefGoogle Scholar
  7. [7]
    Shan, C. X.; Liu, Z.; Hark, S. K. Photoluminescence polarization in individual CdSe nanowires. Phys. Rev. B 2006, 74, 153402.CrossRefGoogle Scholar
  8. [8]
    Wang, P.; Abrusci, A.; Wong, H. M. P.; Svensson, M.; Andersson, M. R.; Greenham, N. C. Photoinduced charge transfer and efficient solar energy conversion in a blend of a red polyfluorene copolymer with CdSe nanoparticles. Nano Lett. 2006, 6, 1789–1793.CrossRefGoogle Scholar
  9. [9]
    Madelung, O.; Schulz, M.; Weiss, H. Landolt-Bornstein Tables; Springer: Berlin, 1982; Vols. 17a and 17b.Google Scholar
  10. [10]
    Manna, L.; Scher, E. C.; Alivisatos, A. P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 2000, 122, 12700–12706.CrossRefGoogle Scholar
  11. [11]
    Ma, C.; Wang, Z. L. Road map for the controlled synthesis of CdSe nanowires, nanobelts, and nanosaws—A step towards nanomanufacturing. Adv. Mater. 2005, 17, 2635–2639.CrossRefGoogle Scholar
  12. [12]
    Colli, A.; Fasoli, A.; Hofmann, S.; Ducati, C.; Robertson, J.; Ferrari, A. C. Deterministic shape-selective synthesis of nanowires, nanoribbons and nanosaws by steady-state vapourtransport. Nanotechnology 2006, 17, 1046–1051.CrossRefGoogle Scholar
  13. [13]
    Fasoli, A.; Pisana, S.; Colli, A.; Carbone, L.; Manna, L.; Ferrari, A. C. Vapor-phase nucleation of individual CdSe nanostructures from shape-engineered nanocrystal seeds. Appl. Phys. Lett. 2008, 92, 023106.CrossRefGoogle Scholar
  14. [14]
    Kuno, M. An overview of solution-based semiconductor nanowires: Synthesis and optical studies. Phys. Chem. Chem. Phys. 2008, 10, 620–639.CrossRefGoogle Scholar
  15. [15]
    Xiang, B.; Zhang, H. Z.; Li, G. H.; Yang, F. H.; Su, F. H.; Wang, R. M.; Xu, J.; Lu, G. W.; Sun, X. C.; Zhao, Q.; Yu, D. P. Green-light-emitting ZnSe nanowires fabricated via vapor phase growth. Appl. Phys. Lett. 2003, 82, 3330–3332.CrossRefGoogle Scholar
  16. [16]
    Zhang, X. T.; Ip, K. M.; Li, Q.; Hark, S. K. Photoluminescence of Ag-doped ZnSe nanowires synthesized by metalorganic chemical vapor deposition. Appl. Phys. Lett. 2005, 86, 203114.CrossRefGoogle Scholar
  17. [17]
    Zhang, B. P.; Binh, N. T.; Segawa, Y.; Kashiwaba, Y.; Haga, K. Photoluminescence study of ZnO nanorods epitaxially grown on sapphire (11{ie14-1}0) substrates. Appl. Phys. Lett. 2004, 84, 586–588.CrossRefGoogle Scholar
  18. [18]
    Colli, A.; Hofmann, S.; Ferrari, A. C.; Martelli, F.; Rubini, S.; Ducati, C.; Franciosi, A.; Robertson, J. Selective growth of ZnSe and ZnCdSe nanowires by molecular beam epitaxy. Nanotechnology 2005, 16, S139–S142.CrossRefGoogle Scholar
  19. [19]
    Zhou, X. T.; Kim, P. S. G.; Shama, T. K.; Lee, S. T. Fabrication, morphology, structure, and photoluminescence of ZnS and CdS nanoribbons. J. Appl. Phys. 2005, 98, 024312.CrossRefGoogle Scholar
  20. [20]
    Wang, Z. Q.; Gong, J. F.; Duan, J. H.; Huang, H. B.; Yang, S. G.; Zhao, X. N.; Zhang, R.; Du, Y. W. Direct synthesis and characterization of CdS nanobelts. Appl. Phys. Lett. 2006, 89, 033102.CrossRefGoogle Scholar
  21. [21]
    Li, Q.; Brown, M. A.; Hemminger, J. C.; Penner, R. M. Luminescent polycrystalline cadmium selenide nanowires synthesized by cyclic electrodeposition/stripping coupled with step edge decoration. Chem. Mater. 2006, 18, 3432–3441.CrossRefGoogle Scholar
  22. [22]
    Chèze, C.; Geelhaar, L.; Brandt, O.; Weber, W. M.; Riechert, H.; Münch, S.; Rothemund, R.; Reitzenstein, S.; Forchel, A.; Kehagias, T.; Komninou, P.; Dimitrakopulos, G. P.; Karakostas, T. Direct comparison of catalyst-free and catalyst-induced GaN nanowires. Nano Res. 2010, 3, 528–536.CrossRefGoogle Scholar
  23. [23]
    Venugopal, R.; Lin, P. I.; Liu, C. C.; Chen, Y. T. Surface-enhanced Raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets. J. Am. Chem. Soc. 2005, 127, 11262–11268.CrossRefGoogle Scholar
  24. [24]
    Protasenko, V. V.; Hull, K. L.; Kuno, M. Disorder-induced optical heterogeneity in single CdSe nanowires. Adv. Mater. 2005, 17, 2942–2949.CrossRefGoogle Scholar
  25. [25]
    Philipose, U.; Xu, T.; Yang, S.; Sun, P.; Ruda, H. E.; Wang, Y. Q.; Kavanagh, K. L. Enhancement of band edge luminescence in ZnSe nanowires. J. Appl. Phys. 2006, 100, 084316.CrossRefGoogle Scholar
  26. [26]
    Lan, A.; Giblin, J.; Protasenko, V.; Kuno, M. Excitation and photoluminescence polarization anisotropy of single CdSe nanowires. Appl. Phys. Lett. 2008, 92, 183110.CrossRefGoogle Scholar
  27. [27]
    Liu, Y. -H.; Wayman, V. L.; Gibbons, P. C.; Loomis, R. A.; Buhro, W. E. Origin of high photoluminescence efficiencies in CdSe quantum belts. Nano Lett. 2010, 10, 352–357.CrossRefGoogle Scholar
  28. [28]
    Glennon, J. J.; Tang, R.; Buhro, W. E.; Loomis, R. A.; Bussian, D. A.; Htoon, H.; Klimov V. I. Exciton localization and migration in individual CdSe quantum wires at low temperatures. Phys. Rev. B 2009, 80 081303(R).CrossRefGoogle Scholar
  29. [29]
    Giblin, J.; Syed, M.; Banning, M. T.; Kuno, M.; Hartland, G. Experimental determination of single CdSe nanowire absorption cross sections through photothermal imaging, ACS Nano 2010, 4, 358–364.CrossRefGoogle Scholar
  30. [30]
    Agarwal, R.; Barrelet, C. J.; Lieber, C. M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Lett. 2005, 5, 917–920.CrossRefGoogle Scholar
  31. [31]
    Borgstrom, M. T.; Zwiller, V.; Muller, E.; Imamoglu, A. Optically bright quantum dots in single nanowires. Nano Lett. 2005, 5, 1439–1443.CrossRefGoogle Scholar
  32. [32]
    Philipose, U.; Yang, S.; Xu, T.; Ruda, H. E. Origin of the red luminescence band in photoluminescence spectra of ZnSe nanowires. Appl. Phys. Lett. 2007, 90, 063103.CrossRefGoogle Scholar
  33. [33]
    Wagner R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.CrossRefGoogle Scholar
  34. [34]
    Wu, Y. Yang, P. Direct observation of Vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 2001, 123, 3165–3166.CrossRefGoogle Scholar
  35. [35]
    Kodambaka, S.; Tersoff, J.; Reuter, M. C.; Ross, F. M. Diameter-independent kinetics in the vapor-liquid-solid growth of Si nanowires. Phys. Rev. Lett. 2006, 96, 096105.CrossRefGoogle Scholar
  36. [36]
    Colli, A.; Fasoli, A.; Beecher, P.; Servati, P.; Pisana, S.; Fu, Y.; Flewitt, A. J.; Milne, W. I.; Robertson, J.; Ducati, C.; De Franceschi, S.; Hofmann, S.; Ferrari, A. C. Thermal and chemical vapor deposition of Si nanowires: Shape control, dispersion, and electrical properties. J. Appl. Phys. 2007, 102, 034302.CrossRefGoogle Scholar
  37. [37]
    Kamins, T. I.; Williams, R. S.; Basile, D. P.; Hesjedal, T.; Harris, J. S. Ti-catalyzed Si nanowires by chemical vapor deposition: Microscopy and growth mechanisms. J. Appl. Phys. 2001, 89, 1008–1016.CrossRefGoogle Scholar
  38. [38]
    Hofmann, S.; Ducati, C.; Neill, R. J.; Piscanec, S.; Ferrari, A. C.; Geng, J.; Dunin-Borkowski, R. E.; Robertson, J. Gold catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition. J. Appl. Phys. 2003, 94, 6005–6012.CrossRefGoogle Scholar
  39. [39]
    Dick, K. A.; Deppert, K.; Martensson, T.; Mandl, B.; Samuelson, L.; Seifert, W. Failure of the vapor-liquid-solid mechanism in Au-assisted MOVPE growth of InAs nanowires. Nano Lett. 2005, 5, 761–764.CrossRefGoogle Scholar
  40. [40]
    Colli, A.; Hofmann, S.; Ferrari, A. C.; Ducati, C.; Martelli, F.; Rubini, S.; Cabrini, S.; Franciosi, A.; Robertson, J. Low-temperature synthesis of ZnSe nanowires and nanosaws by catalyst-assisted molecular-beam epitaxy. Appl. Phys. Lett. 2005, 86, 153103.CrossRefGoogle Scholar
  41. [41]
    Wang, Y.; Schmidt, V.; Senz, S.; Gosele, U. Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat. Nanotechnol. 2006, 1, 186–189.CrossRefGoogle Scholar
  42. [42]
    Carlino, E. Martelli, F. Rubini, S. Franciosi, A. Catalyst incorporation in ZnSe nanowires. Phil. Mag. Lett. 2006, 86, 261–266.CrossRefGoogle Scholar
  43. [43]
    Allen, J. E.; Hemesath, E. R.; Perea, D. E.; Lensch-Falk, J. L.; Li, Z. Y.; Yin, F.; Gass, M. H.; Wang, P.; Bleloch, A. L.; Palmer, R. E.; Lauhon, L. J. High-resolution detection of Au catalyst atoms in Si nanowires. Nat. Nanotechnol. 2008, 3, 168–173.CrossRefGoogle Scholar
  44. [44]
    Oh, S. H.; van Benthem, K.; Molina, S. I.; Borisevich, A. Y.; Luo, W.; Werner, P.; Zakharov, N. D.; Kumar, D.; Pantelides, S. T.; Pennycook, S. J. Point defect configurations of supersaturated Au atoms inside Si nanowires. Nano Lett. 2008, 8, 1016–1019.CrossRefGoogle Scholar
  45. [45]
    Kim, B. -S.; Koo, T. W.; Lee, J. H.; Kim, D. S.; Jung, Y. C.; Hwang, S. W.; Choi, B. L.; Lee, E. K.; Kim, J. M.; Whang, D. Catalyst-free growth of single-crystal silicon and germanium nanowires. Nano Lett. 2009, 9, 864–869.CrossRefGoogle Scholar
  46. [46]
    Wang, N.; Tang, Y. H.; Zhang, Y. F.; Lee, C. S.; Bello, I.; Lee, S. T. Si nanowires grown from silicon oxide. Chem. Phys. Lett. 1999, 299, 237–242.CrossRefGoogle Scholar
  47. [47]
    Mandl, B.; Stangl, J.; Martensson, T.; Mikkelsen, A.; Eriksson, J.; Karlsson, L. S.; Bauer, G.; Samuelson, L.; Seifert, W. Au-free epitaxial growth of InAs nanowires. Nano Lett. 2006, 6, 1817–1821.CrossRefGoogle Scholar
  48. [48]
    Stach, E. A.; Pauzauskie, P. J.; Kuykendall, T.; Goldberger, J.; He, R.; Yang, P. Watching GaN nanowires grow. Nano Lett. 2003, 3, 867–869.CrossRefGoogle Scholar
  49. [49]
    Novotny, C. J.; Yu, P. K. L. Vertically aligned, catalyst-free InP nanowires grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 2005, 87, 203111.CrossRefGoogle Scholar
  50. [50]
    Dai, Z. R.; Pan, Z. W.; Wang, Z. L. Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 2003, 13, 9–24.CrossRefGoogle Scholar
  51. [51]
    Fasoli, A.; Colli, A.; Kudera, S.; Manna, L.; Hofmann, S.; Ducati, C.; Robertson, J.; Ferrari, A. C. Catalytic and seeded shape-selective synthesis of II-IV semiconductor nanowires. Physica E 2007, 37, 138–141.CrossRefGoogle Scholar
  52. [52]
    Wang, Z. L.; Kong, X. Y.; Zuo, J. M. Induced growth of asymmetric nanocantilever arrays on polar surfaces. Phys. Rev. Lett. 2003, 91, 185502.CrossRefGoogle Scholar
  53. [53]
    Perna, G.; Capozzi, V.; Ambrico, M. Structural properties and photoluminescence study of CdSe/Si epilayers deposited by laser ablation. J. Appl. Phys. 1998, 83, 3337–3344.CrossRefGoogle Scholar
  54. [54]
    Yu, P. Y.; Hermann, C. Excitation spectroscopies of impurities in CdSe. Phys. Rev. B 1981, 23, 4097–4106.CrossRefGoogle Scholar
  55. [55]
    Silberstein, R. P., Tomkiewicz, M. Characterization of polycrystalline electrodeposited CdSe photoelectrodes using photoluminescence spectroscopy. J. Appl. Phys. 1983, 54, 5428–5435.CrossRefGoogle Scholar
  56. [56]
    Arora, A. K.; Ramdas, A. K. Resonance Raman scattering from defects in CdSe. Phys. Rev. B 1987, 35, 4345–4350.CrossRefGoogle Scholar
  57. [57]
    Rosen, D. L.; Li, Q. X.; Alfano, R. R. Native defects in undoped semi-insulating CdSe studied by photoluminescence and absorption. Phys. Rev. B 1985, 31, 2396–2403.CrossRefGoogle Scholar
  58. [58]
    Kokubun, Y.; Watanabe, H.; Wada, M. Photoluminescence of CdSe single crystals. Jap. J. Appl. Phys. 1974, 13, 1393–1398.CrossRefGoogle Scholar
  59. [59]
    Jager-Waldau, R.; Stucheli, N.; Braun, M.; Steiner, M. L.; Bucher, E.; Tenne, R.; Flaisher, H.; Kerfin, W.; Braun, R.; Koschel, W. Thin-film CdSe: Photoluminescence and electronic measurements. J. Appl. Phys. 1988, 64, 2601–2606.CrossRefGoogle Scholar
  60. [60]
    Ma, C.; Ding, Y.; Moore, D.; Wang, X.; Wang, Z. L. Single-crystal CdSe nanosaws. J. Am. Chem. Soc. 2004, 126, 708–709.CrossRefGoogle Scholar
  61. [61]
    Henry, C. H.; Nassau, K.; Shiever, J. W. Optical studies of shallow acceptors in CdS and CdSe. Phys. Rev. B 1971, 4, 2453–2463.CrossRefGoogle Scholar
  62. [62]
    Tamargo, M. C. II–IV Semiconductor Materials and their Applications; Taylor and Francis: New York, 2002.Google Scholar
  63. [63]
    Klingshirn, C. F. Semiconductor Optics; Springer: Berlin, 1997.Google Scholar
  64. [64]
    Bogardus, E. H.; Bebb, H. B. Bound-exciton, free-exciton, band-acceptor, donor-acceptor and Auger recombination in GaAs. Phys. Rev. 1968, 176, 993–1002.CrossRefGoogle Scholar
  65. [65]
    Schmidt, T.; Lischka, K.; Zulehner, W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys. Rev. B 1992, 45, 8989–8994.CrossRefGoogle Scholar
  66. [66]
    Magde, D.; Mahr, H. Exciton-exciton interaction in CdS, CdSe, and ZnO. Phys. Rev. Lett. 1970, 24, 890–893.CrossRefGoogle Scholar
  67. [67]
    Tenne, R.; Jager-Waldau, R.; Lux-Steiner, M.; Bucher, E.; Rioux, J.; Levy-Clement, C. Transport and optical properties of low-resistivity CdSe. Phys. Rev. B 1990, 42, 1763–1772.CrossRefGoogle Scholar
  68. [68]
    Pavesi, L.; Guzzi, M. Photoluminescence of AlxGa1−xAs alloys. J. Appl. Phys. 1994, 75, 4779–4842.CrossRefGoogle Scholar
  69. [69]
    Thomas, D. G.; Gershenzon, M.; Trumbore, F. A. Pair spectra and “edge” emission in gallium phosphide. Phys. Rev. 1964, 133, A269–A279.CrossRefGoogle Scholar
  70. [70]
    Yu, P. Y. Resonant Raman study of LO+ acoustic phonon modes in CdSe. Solid State Commun. 1976, 19, 1087–1090.CrossRefGoogle Scholar
  71. [71]
    Yu, P. Y.; Cardona, M. Fundamentals of Semiconductors; Springer-Verlag: Berlin, 2003.Google Scholar
  72. [72]
    Dean, P. J.; Fitzpatrick, B. J.; Bhargava, R. N. Optical properties of ZnSe doped with Ag and Au. Phys. Rev. B 1982, 26, 2016–2035.CrossRefGoogle Scholar
  73. [73]
    Jarrett, D. N.; Ward, L. Optical properties of discontinuous gold films. J. Phys. D 1976, 9, 1515–1527.CrossRefGoogle Scholar
  74. [74]
    Jiran, E.; Thompson, C. V. Capillary instabilities in thin films. J. Elect. Mater. 1990, 19, 1153–1160.CrossRefGoogle Scholar
  75. [75]
    Pellegrino, T.; Kudera, S.; Liedl, T.; Javier, A. M.; Manna, L.; Parak, W. J. On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications. Small 2005, 1, 48–63.CrossRefGoogle Scholar
  76. [76]
    Zhai, T.; Zhong, H.; Gu, Z.; Peng, A.; Fu, H.; Ma, Y.; Li, Y.; Yao, J. Manipulation of the morphology of ZnSe sub-micron structures using CdSe nanocrystals as the seeds. J. Phys. Chem. C 2007, 111, 2980–2986.CrossRefGoogle Scholar
  77. [77]
    Piscanec, S.; Cantoro, M.; Ferrari, A. C.; Zapien, J. A.; Lifshitz, Y.; Lee, S. T.; Hofmann, S.; Robertson, J. Raman spectroscopy of silicon nanowires. Phys. Rev. B. 2003, 68, 241312.CrossRefGoogle Scholar
  78. [78]
    Scheel, H.; Reich, S.; Ferrari, A. C.; Cantoro, M.; Colli, A.; Thomsen, C. Raman scattering on silicon nanowires: The thermal conductivity of the environment determines the optical phonon frequency. Appl. Phys. Lett. 2006, 88, 233114.CrossRefGoogle Scholar
  79. [79]
    Konstantinović, M. J.; Bersier, S.; Wang, X.; Hayne, M.; Lievens, P.; Silverans, R. E.; Moshchalkov, V. V. Raman scattering in cluster-deposited nanogranular silicon films. Phys. Rev. B 2002, 66, 161311(R).Google Scholar
  80. [80]
    Li, D.; Wu, Y.; Kim, P.; Shi, L.; Yang, P.; Majumdar, A. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 2003, 83, 2934–2936.CrossRefGoogle Scholar
  81. [81]
    Wu, Q.; Grober, R. D.; Gammon, D.; Katzer, D. S. Excitons, biexcitons, and electron-hole plasma in a narrow 2.8-nm GaAs/AlxGa1−xAs quantum well. Phys. Rev. B 2000, 62, 13022–13027.CrossRefGoogle Scholar
  82. [82]
    Brunner, K.; Abstreiter, G.; Böhm, G.; Tränkle, G.; Weimann, G. Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure. Phys. Rev. Lett. 1994, 73, 1138–1141.CrossRefGoogle Scholar
  83. [83]
    Bruchez, M. Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.CrossRefGoogle Scholar
  84. [84]
    Intonti, F.; Emiliani, V.; Lienau, C.; Elsaesser, T.; Notzel, R.; Ploog, K. H. Low temperature near-field luminescence studies of localized and delocalized excitons in quantum wires. J. Microsc. 2001, 202, 193–201.CrossRefGoogle Scholar
  85. [85]
    Han, X.; Kou, L.; Lang, X.; Xia, J.; Wang, N.; Qin, R.; Lu, J.; Xu, J.; Liao, Z.; Zhang, X.; Shan, X.; Song, X.; Gao, J.; Guo, W.; Yu, D. Electronic and mechanical coupling in bent ZnO nanowires. Adv. Mater. 2009, 21, 4937–4941.CrossRefGoogle Scholar
  86. [86]
    Sköld, N.; Karlsson, L. S.; Larsson, M. W.; Pistol, M. -E.; Seifert, W.; Trägårdh, J.; Samuelson, L. Growth and optical properties of strained GaAs-GaxIn1−xP core-shell nanowires. Nano Lett. 2005, 5, 1943–1947.CrossRefGoogle Scholar
  87. [87]
    Jabeen, F.; Rubini, S.; Grillo, V.; Felisari, L.; Martelli, F. Room temperature luminescent InGaAs/GaAs core-shell nanowires. Appl. Phys. Lett. 2008, 93, 083117.CrossRefGoogle Scholar
  88. [88]
    Kobayashi, A.; Sankey, O. F.; Dow, J. D. Deep energy levels of defects in the wurtzite semiconductors AlN, CdS, CdSe, ZnS, and ZnO. Phys. Rev. B 1983, 28, 946–956.CrossRefGoogle Scholar
  89. [89]
    Venghaus, H.; Dean, P. J. Shallow-acceptor, donor, free-exciton, and bound-exciton states in high-purity zinc telluride. Phys. Rev. B 1980, 21, 1596–1609.CrossRefGoogle Scholar
  90. [90]
    Kikkawa, J.; Ohno, Y.; Takeda, S. Growth rate of silicon nanowires. Appl. Phys. Lett. 2006, 86, 123109.CrossRefGoogle Scholar
  91. [91]
    Johansson, J.; Karlsson, L. S.; Svensson, C. P. T.; Martensson, T.; Wacaser, B. A.; Deppert, K.; Samuelson, L.; Seifert, W. Structural properties of 〈111〉B-oriented III–V nanowires. Nat. Mater. 2006, 5, 574–580.CrossRefGoogle Scholar
  92. [92]
    Hannon, J. B.; Kodambaka, S.; Ross, F. M.; Tromp, R. M. The influence of the surface migration of gold on the growth of silicon nanowires. Nature 2006, 440, 69–71.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Andrea Fasoli
    • 1
  • Alan Colli
    • 2
  • Faustino Martelli
    • 3
  • Simone Pisana
    • 1
  • Ping Heng Tan
    • 4
  • Andrea C. Ferrari
    • 1
  1. 1.Department of EngineeringUniversity of CambridgeCambridgeUK
  2. 2.Nokia Research CentreCambridgeUK
  3. 3.Istituto per la Microelettronica e i Microsistemi del CNRRomeItaly
  4. 4.SKLSM, Institute of SemiconductorsChinese Academy of SciencesBeijingChina

Personalised recommendations