Nano Research

, Volume 4, Issue 4, pp 334–342 | Cite as

Low temperature growth of SWNTs on a nickel catalyst by thermal chemical vapor deposition

  • Maoshuai He
  • Alexander I. Chernov
  • Elena D. Obraztsova
  • Jani Sainio
  • Emma Rikkinen
  • Hua Jiang
  • Zhen Zhu
  • Antti Kaskela
  • Albert G. Nasibulin
  • Esko I. Kauppinen
  • Marita Niemelä
  • Outi Krause
Research Article

Abstract

Single-walled carbon nanotubes (SWNTs) have been grown on a silica-supported monometallic nickel (Ni) catalyst at temperatures ranging from as low as 450 °C to 800 °C. Different spectroscopic techniques, such as Raman, photoluminescence emission (PLE), and ultra violet-visible-near infrared (UV-vis-NIR) absorption spectroscopy were used to evaluate the diameter and quality of the SWNTs grown over the Ni catalyst at different temperatures. The analysis revealed that high quality SWNTs with a very narrow diameter distribution were obtained at a growth temperature of 500 °C. In the PLE and absorption spectra, differences were observed between the SWNTs grown on Ni and those grown on cobalt (Co). This result expands the potential of growing a specific (n, m) tube species with relatively high abundance by tuning the catalyst composition. Furthermore, the prerequisites for the low temperature growth of SWNTs over a monometallic transition metal catalyst have been elucidated.

Keywords

Single-walled carbon nanotubes synthesis low temperature nickel catalyst 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605.CrossRefGoogle Scholar
  2. [2]
    Bethune, D. S.; Klang, C. H.; de Vries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyes, R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993, 363, 605–607.CrossRefGoogle Scholar
  3. [3]
    Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.CrossRefGoogle Scholar
  4. [4]
    Guo, T.; Nikolaev, P.; Thess, A.; Colbert, D. T.; Smalley, R. E. Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 2004, 243, 49–54.CrossRefGoogle Scholar
  5. [5]
    Kong, J.; Cassell, A. M.; Dai, H. J. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett. 1998, 292, 567–574.CrossRefGoogle Scholar
  6. [6]
    Hirsch, A. Growth of single-walled carbon nanotubes without a metal catalyst-a surprising discovery. Angew. Chem. Int. Ed., 2009, 48, 5403–5404.CrossRefGoogle Scholar
  7. [7]
    Bachilo, S. M.; Balzano, L.; Herrera, J. E.; Pompeo, F.; Resasco, D. E.; Weisman, R. B. Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 2003, 125, 11186–11187.CrossRefGoogle Scholar
  8. [8]
    Li, X. J.; Tu, X. M.; Zaric, S.; Welsher, K.; Seo, W. S.; Zhao, W.; Dai, H. J. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection. J. Am. Chem. Soc. 2007, 129, 15770–15771.CrossRefGoogle Scholar
  9. [9]
    Maruyama, S.; Miyauchi, Y.; Murakami, Y.; Chiashi, S. Optical characterization of single-walled carbon nanotubes synthesized by catalytic decomposition of alcohol. New J. Phys. 2003, 5, 149.CrossRefGoogle Scholar
  10. [10]
    He, M. S.; Chernov, A. I.; Obraztsova, E. D.; Sainio, J.; Rikkinen, E.; Zhu, Z.; Jiang, H.; Kauppinen, E. I.; Niemelä, M.; Krause, A. O. I. Predominant growth of (6,5) single-walled carbon nanotubes on a copper promoted iron catalyst. J. Am. Chem. Soc. 2010, 132, 13994–13996.CrossRefGoogle Scholar
  11. [11]
    Li, N.; Wang, X. M.; Ren, F.; Haller, G.; Pfefferle, L. D. Nanotubes with reaction temperature using a Co monometallic catalyst. J. Phys. Chem. C 2009, 113, 10070–10078.CrossRefGoogle Scholar
  12. [12]
    He, M. S.; Chernol, A. I.; Fedotov, P. V.; Obraztsova, E. D.; Rikkinen, E.; Zhu, Z.; Sainio, J.; Jiang, H.; Nasibulin, A. G.; Kauppinen, E. I.; Niemelä, M.; Krause, A. O. I. Selective growth of SWNTs on partially reduced monometallic cobalt catalyst. Chem. Comm., 2011, DOI: 10.1039/C0CC02751K.Google Scholar
  13. [13]
    Li, Y. M.; Mann, D.; Rolandi, M.; Kim, W.; Ural, A.; Hung, S.; Javey, A.; Cao, J.; Wang, D. W.; Yenilmez, E.; Wang, Q.; Yenilmez, J. F.; Nishi, Y.; Dai, H. J. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano. Lett. 2004, 4, 317–321.CrossRefGoogle Scholar
  14. [14]
    Min, Y. S.; Bae, E. J.; Oh, B. S.; Kang, D. H.; Park, W. J. Low-temperature growth of single-walled carbon nanotubes by water plasma chemical vapor deposition. J. Am. Chem. Soc. 2005, 127, 12498–12499.CrossRefGoogle Scholar
  15. [15]
    Cantoro, M.; Hofmann, S.; Pisana, S.; Scardaci, V.; Parvez, A.; Ducati, C.; Ferrari, A. C.; Blackburn, A. M.; Wang, K. Y.; Robertson, J. Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures. Nano. Lett. 2006, 6, 1107–1112.CrossRefGoogle Scholar
  16. [16]
    Kim, M. S.; Rodriguez, N. M.; Baker, R. T. K. Role of interfacial phenomena in the structure of carbon deposits. J. Catal. 1992, 134, 253–268.CrossRefGoogle Scholar
  17. [17]
    Boelland, E.; de Box, P. K.; Knock, A. I. J. M.; Geus, J. W. The formation of filamentous carbon on iron and nickel catalysts: III. Morphology. J. Catal. 1985, 96, 481–490.CrossRefGoogle Scholar
  18. [18]
    Ziebro, J.; Lukasiewicz, I.; Borowiak-Palen, E.; Michalkiewicz, B. Low temperature growth of carbon nanotubes from methane catalytic decomposition over nickel supported on a zeolite. Nanotechnology 2010, 21, 145308.CrossRefGoogle Scholar
  19. [19]
    Lindblad, M.; Lindfors, L. P.; Suntola, T. Preparation of Ni/A12O3 catalysts from vapor phase by atomic layer epitaxy. Catal. Lett. 1994, 27, 323–336.CrossRefGoogle Scholar
  20. [20]
    Zielinski, J. Reducibility of silica supported nickel oxide. Catal. Lett. 1995, 31, 47–56.CrossRefGoogle Scholar
  21. [21]
    Chastain, J. (Ed) Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Minnesota, 1992.Google Scholar
  22. [22]
    Grosvenor, A. P.; Biesinger, M. C.; Smart, R. C.; McIntyre, N. S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 2006, 600, 1771–1779.CrossRefGoogle Scholar
  23. [23]
    Bandow, S.; Asaka, S.; Saito, Y.; Rao, A. M.; Grigorian, L.; Richter, E.; Eklund, P. C. Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Phys. Rev. Lett. 1998, 80, 3779–3782.CrossRefGoogle Scholar
  24. [24]
    Tan, P. H.; Rozhin, A. G.; Hasan, T.; Hu, P.; Scardaci, V.; Milne, W. I.; Ferrari, A. C. Photoluminescence spectroscopy of carbon nanotube bundles: Evidence for exciton energy transfer. Phys. Rev. Lett. 2007, 99, 137402.CrossRefGoogle Scholar
  25. [25]
    Chernov, A. I.; Obraztsova, E. D. Photoluminescence of single-wall carbon nanotube films. Phys. Status. Solidi. B 2010 , 247, 2805–2809.CrossRefGoogle Scholar
  26. [26]
    Wang, Q.; Ng, M. F.; Yang, S. W.; Yang, Y. H.; Chen, Y. The mechanism of single-walled carbon nanotube growth and chirality selection induced by carbon atom and dimer addition. ACS. Nano 2010, 4, 939–946.CrossRefGoogle Scholar
  27. [27]
    Chiang, W. H.; Sankaran, R. M. Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NixFe1−x nanoparticles. Nat. Mater. 2009, 8, 882–886.CrossRefGoogle Scholar
  28. [28]
    Lim, S. Y.; Wang, C.; Yang, Y. H.; Ciuparu, D.; Pfefferle, L.; Haller, G. L. Evidence for anchoring and partial occlusion of metallic clusters on the pore walls of MCM-41 and effect on the stability of the metallic clusters. Catal. Today 2007, 123, 122–132.CrossRefGoogle Scholar
  29. [29]
    Bonneviot, L.; Che, M.; Olivier, D.; Martin, G. A.; Freund, E. Electron microscopy and magnetic studies of the interaction between nickel and silica: Considerations on possible anchoring sites. J. Phys. Chem. 1986, 90, 2112–2117.CrossRefGoogle Scholar
  30. [30]
    Wang, B.; Yang, Y. H.; Li, L. J.; Chen, Y. Effect of different catalyst supports on the (n,m) selective growth of single-walled carbon nanotube from Co-Mo catalyst. J. Mater. Sci. 2009, 44, 3285–3295.CrossRefGoogle Scholar
  31. [31]
    Zhang, G. Y.; Mann, D.; Zhang, L.; Javey, A.; Li, Y. M.; Yenilmenz, E.; Wang, Q.; McVittie, J.; Nishi, Y.; Gibbons, J.; Dai, H. Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. P. Natl. Acad. Sci. USA 2005, 102, 16141–16145.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Maoshuai He
    • 1
  • Alexander I. Chernov
    • 2
  • Elena D. Obraztsova
    • 2
  • Jani Sainio
    • 3
  • Emma Rikkinen
    • 1
  • Hua Jiang
    • 4
  • Zhen Zhu
    • 4
  • Antti Kaskela
    • 4
  • Albert G. Nasibulin
    • 4
  • Esko I. Kauppinen
    • 4
    • 5
  • Marita Niemelä
    • 1
  • Outi Krause
    • 1
  1. 1.Department of Biotechnology and Chemical Technology, School of Science and TechnologyAalto UniversityAaltoFinland
  2. 2.A.M. Prokhorov General Physics Institute RASMoscowRussia
  3. 3.Department of Applied Physics, School of Science and TechnologyAalto UniversityAaltoFinland
  4. 4.Nanomaterials Group, Department of Applied Physics and Center for New Materials, School of Science and TechnologyAalto UniversityAaltoFinland
  5. 5.VTT BiotechnologyEspooFinland

Personalised recommendations