Skip to main content
Log in

Morphology-controlled fabrication of sulfonated graphene/polyaniline nanocomposites by liquid/liquid interfacial polymerization and investigation of their electrochemical properties

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A novel morphology-controlled strategy has been developed to fabricate sulfonated graphene/polyaniline (SGEP) nanocomposites by liquid/liquid interfacial polymerization. Sulfonated graphene (SGE) sheets were synthesized and used as both a macromolecular acid dopant and substrate for the polymerization of polyaniline (PANI), affording the SGEP nanocomposites. The morphology of PANI in the nanocomposites can be controlled to be either nanorods or nanogranules by varying the synthesis conditions. The morphology of SGEP and the shape of PANI can be tuned by adding an additional dopant and varying the amount of SGE used, and this had a significant influence on the electrochemical performance of the nanocomposites as supercapacitor electrode materials. The SGEP nanocomposite with PANI nanorods exhibited a specific capacitance of 763 F/g with a capacity retention of 96% after 100 cycles and good rate properties. Composites obtained with HCl as an additional acid dopant with two different ratios of SGE to PANI showed higher specific capacitances of 793 and 931 F/g, but lower capacity retention after 100 cycles of 77% and 76%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Karpan, V. M.; Brink, J. V. D.; Kelly, P. J. Doping graphene with metal contacts. Phys. Rev. Lett. 2008, 101, 026803.

    Article  CAS  Google Scholar 

  2. Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A. Graphene: The new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 2009, 48, 7752–7777.

    Article  CAS  Google Scholar 

  3. Kou, R.; Shao, Y.; Wang, D.; Engelhard, M. H.; Kwak, J. H.; Wanga, J.; Viswanathan, V. V.; Wang, C.; Lin, Y.; Wang, Y.; Aksay, I. A.; Liu, J. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem. Commun. 2009, 11, 954–957.

    Article  CAS  Google Scholar 

  4. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.

    Article  CAS  Google Scholar 

  5. Stroller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.

    Article  Google Scholar 

  6. Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T. Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460.

    Article  CAS  Google Scholar 

  7. Muszynski, R.; Seger, B.; Kamat, P. V. Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C 2008, 112, 5263–5266.

    Article  CAS  Google Scholar 

  8. Li, Y.; Tang, L.; Li, J. Preparation and electrochemical performance for methanol oxidation of Pt/graphene nano-composites. Electrochem. Commun. 2009, 11, 846–849.

    Article  Google Scholar 

  9. Zhou, X.; Huang, X.; Qi, X.; Wu, S.; Xue, C. Boey, F. Y. C.; Yan, Q.; Chen, P.; Zhang, H. In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J. Phys. Chem. C 2009, 113, 10842–10846.

    Article  CAS  Google Scholar 

  10. Si, Y.; Samulski, E. T. Exfoliated graphene separated by platinum nanoparticles. Chem. Mater. 2008, 20, 6792–6797.

    Article  CAS  Google Scholar 

  11. Cao, A.; Liu, Z.; Chu, S.; Wu, M.; Ye, Z.; Cai, Z.; Chang, Y.; Wang, S.; Gong, Q.; Liu, Y. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials. Adv. Mater. 2010, 22, 103–106.

    Article  CAS  Google Scholar 

  12. Vickery, J. L.; Patil, A. J.; Mann, S. Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. Adv. Mater. 2009, 21, 2180–2184.

    Article  CAS  Google Scholar 

  13. Xu, Y.; Wang, Y.; Liang, J.; Huang, Y.; Ma, Y.; Wan, X.; Chen, Y. A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Res. 2009, 2, 343–348.

    Article  CAS  Google Scholar 

  14. Wang, X.; Tabakman, S. M.; Dai, H. Atomic layer deposition of metal oxides on pristine and functionalized graphene. J. Am. Chem. Soc. 2008, 130, 8152–8153.

    Article  CAS  Google Scholar 

  15. Li, F.; Song, J.; Yang, H.; Gan, S.; Zhang, Q.; Han, D.; Ivaska, A.; Niu, L. One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nanotechnology 2009, 20, 455602.

    Article  Google Scholar 

  16. Xu, C.; Wang, X.; Zhu, J.; Yang, X.; Lu, L. Deposition of Co3O4 nanoparticles onto exfoliated graphite oxide sheets. J. Mater. Chem. 2008, 18, 5625–5629.

    Article  CAS  Google Scholar 

  17. Williams, G.; Serger, B.; Kamat, P. V. TiO2-graphene nano-composites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008, 2, 1487–1491.

    Article  CAS  Google Scholar 

  18. Hao, Q.; Wang, X.; Lu, L.; Yang, X.; Mirsky, V. M. Electropolymerized multilayer conducting polymers with response to gaseous hydrogen chloride. Macromol. Rapid Commun. 2005, 26, 1099–1103.

    Article  CAS  Google Scholar 

  19. Hao, Q.; Lei, W.; Xia, X.; Yan, Z.; Yang, X.; Lu, L.; Wang, X. Exchange of counter anions in electropolymerized polyaniline films. Electrochim. Acta 2010, 55, 632–640.

    Article  CAS  Google Scholar 

  20. Wang D.; Li F.; Zhao J.; Ren W.; Chen Z.; Tan J.; Wu Z.; Gentle I.; Lu G., Cheng H. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 2009, 3, 1745–1752.

    Article  CAS  Google Scholar 

  21. Murugan, A. V.; Muraliganth, T.; Manthiram, A. Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage. Chem. Mater. 2009, 21, 5004–5006.

    Article  CAS  Google Scholar 

  22. Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 2010, 4, 1963–1970.

    Article  CAS  Google Scholar 

  23. Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. Graphene oxide doped PANI for supercapacitors. Electrochem. Commun. 2009, 11, 1158–1161.

    Article  CAS  Google Scholar 

  24. Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang X. Effect of graphene oxide on the properties of its composite with polyaniline. ACS Appl. Mater. Interf. 2010, 2, 821–828.

    Article  CAS  Google Scholar 

  25. Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang X. Nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale, 2010, 2, 2164–2170.

    Article  CAS  Google Scholar 

  26. Huang J.; Kaner R. B. A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc., 2004, 126, 851–855

    Article  CAS  Google Scholar 

  27. Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; Gorchinskiy, A. D. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 1999, 11, 771–778.

    Article  CAS  Google Scholar 

  28. Si, Y.; Samulski, E. T. Synthesis of water soluble graphene. Nano Lett. 2008, 8, 1679–1682.

    Article  CAS  Google Scholar 

  29. Mi, H.; Zhang, X.; Yang, S.; Ye, X.; Luo, J. Polyaniline nanofibers as the electrode material for supercapacitors. Mater. Chem. Phys. 2008, 112, 127–131.

    Article  CAS  Google Scholar 

  30. Dhand, C.; Arya, S. K.; Singh, S. P.; Singh, B. P.; Datta, M.; Malhotra, B. D. Preparation of polyaniline/multiwalled carbon nanotube composite by novel electrophoretic route. Carbon 2008, 46, 1727–1735.

    Article  CAS  Google Scholar 

  31. Zhang, K.; Zhang, L.; Zhao, X. S.; Wu, J. Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 2010, 22, 1392–1401.

    Article  CAS  Google Scholar 

  32. Yan, J.; Wei, T.; Shao, B.; Fan, Z.; Qian, W.; Zhang, M.; Wei, F. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 2010, 48, 487–493.

    Article  CAS  Google Scholar 

  33. Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.; Wang, C.; Chen, M.; Chen Y. Supercapacitor devices based on graphene materials. J. Phys. Chem. C, 2009, 113, 13103–13107.

    Article  CAS  Google Scholar 

  34. Cao, Y.; Mallouk, T. E. Morphology of template-grown polyaniline nanowires and its effect on the electrochemical capacitance of nanowire arrays. Chem. Mater. 2008, 20, 5260–5265.

    Article  CAS  Google Scholar 

  35. Merino, C.; Soto, P.; Vilaplana-Ortego, E.; Gomez de Salazar, J. M.; Pico, F.; Rojo, J. M. Carbon nanofibres and activated carbon nanofibres as electrodes in supercapacitors. Carbon, 2005, 43, 551–557.

    Article  CAS  Google Scholar 

  36. Liu, X.; Pickup, P. G. Ru oxide supercapacitors with high loadings and high power and energy densities. J. Power Sources, 2008, 176, 410–416.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingli Hao or Xin Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, Q., Wang, H., Yang, X. et al. Morphology-controlled fabrication of sulfonated graphene/polyaniline nanocomposites by liquid/liquid interfacial polymerization and investigation of their electrochemical properties. Nano Res. 4, 323–333 (2011). https://doi.org/10.1007/s12274-010-0087-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-010-0087-4

Keywords

Navigation