Nano Research

, Volume 4, Issue 4, pp 323–333 | Cite as

Morphology-controlled fabrication of sulfonated graphene/polyaniline nanocomposites by liquid/liquid interfacial polymerization and investigation of their electrochemical properties

Research Article


A novel morphology-controlled strategy has been developed to fabricate sulfonated graphene/polyaniline (SGEP) nanocomposites by liquid/liquid interfacial polymerization. Sulfonated graphene (SGE) sheets were synthesized and used as both a macromolecular acid dopant and substrate for the polymerization of polyaniline (PANI), affording the SGEP nanocomposites. The morphology of PANI in the nanocomposites can be controlled to be either nanorods or nanogranules by varying the synthesis conditions. The morphology of SGEP and the shape of PANI can be tuned by adding an additional dopant and varying the amount of SGE used, and this had a significant influence on the electrochemical performance of the nanocomposites as supercapacitor electrode materials. The SGEP nanocomposite with PANI nanorods exhibited a specific capacitance of 763 F/g with a capacity retention of 96% after 100 cycles and good rate properties. Composites obtained with HCl as an additional acid dopant with two different ratios of SGE to PANI showed higher specific capacitances of 793 and 931 F/g, but lower capacity retention after 100 cycles of 77% and 76%, respectively.


Polyaniline graphene electrode materials supercapacitor nanomaterials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2010_87_MOESM1_ESM.pdf (236 kb)
Supplementary material, approximately 340 KB.


  1. [1]
    Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Karpan, V. M.; Brink, J. V. D.; Kelly, P. J. Doping graphene with metal contacts. Phys. Rev. Lett. 2008, 101, 026803.CrossRefGoogle Scholar
  2. [2]
    Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A. Graphene: The new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 2009, 48, 7752–7777.CrossRefGoogle Scholar
  3. [3]
    Kou, R.; Shao, Y.; Wang, D.; Engelhard, M. H.; Kwak, J. H.; Wanga, J.; Viswanathan, V. V.; Wang, C.; Lin, Y.; Wang, Y.; Aksay, I. A.; Liu, J. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem. Commun. 2009, 11, 954–957.CrossRefGoogle Scholar
  4. [4]
    Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.CrossRefGoogle Scholar
  5. [5]
    Stroller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.CrossRefGoogle Scholar
  6. [6]
    Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T. Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460.CrossRefGoogle Scholar
  7. [7]
    Muszynski, R.; Seger, B.; Kamat, P. V. Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C 2008, 112, 5263–5266.CrossRefGoogle Scholar
  8. [8]
    Li, Y.; Tang, L.; Li, J. Preparation and electrochemical performance for methanol oxidation of Pt/graphene nano-composites. Electrochem. Commun. 2009, 11, 846–849.CrossRefGoogle Scholar
  9. [9]
    Zhou, X.; Huang, X.; Qi, X.; Wu, S.; Xue, C. Boey, F. Y. C.; Yan, Q.; Chen, P.; Zhang, H. In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J. Phys. Chem. C 2009, 113, 10842–10846.CrossRefGoogle Scholar
  10. [10]
    Si, Y.; Samulski, E. T. Exfoliated graphene separated by platinum nanoparticles. Chem. Mater. 2008, 20, 6792–6797.CrossRefGoogle Scholar
  11. [11]
    Cao, A.; Liu, Z.; Chu, S.; Wu, M.; Ye, Z.; Cai, Z.; Chang, Y.; Wang, S.; Gong, Q.; Liu, Y. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials. Adv. Mater. 2010, 22, 103–106.CrossRefGoogle Scholar
  12. [12]
    Vickery, J. L.; Patil, A. J.; Mann, S. Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. Adv. Mater. 2009, 21, 2180–2184.CrossRefGoogle Scholar
  13. [13]
    Xu, Y.; Wang, Y.; Liang, J.; Huang, Y.; Ma, Y.; Wan, X.; Chen, Y. A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Res. 2009, 2, 343–348.CrossRefGoogle Scholar
  14. [14]
    Wang, X.; Tabakman, S. M.; Dai, H. Atomic layer deposition of metal oxides on pristine and functionalized graphene. J. Am. Chem. Soc. 2008, 130, 8152–8153.CrossRefGoogle Scholar
  15. [15]
    Li, F.; Song, J.; Yang, H.; Gan, S.; Zhang, Q.; Han, D.; Ivaska, A.; Niu, L. One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nanotechnology 2009, 20, 455602.CrossRefGoogle Scholar
  16. [16]
    Xu, C.; Wang, X.; Zhu, J.; Yang, X.; Lu, L. Deposition of Co3O4 nanoparticles onto exfoliated graphite oxide sheets. J. Mater. Chem. 2008, 18, 5625–5629.CrossRefGoogle Scholar
  17. [17]
    Williams, G.; Serger, B.; Kamat, P. V. TiO2-graphene nano-composites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008, 2, 1487–1491.CrossRefGoogle Scholar
  18. [18]
    Hao, Q.; Wang, X.; Lu, L.; Yang, X.; Mirsky, V. M. Electropolymerized multilayer conducting polymers with response to gaseous hydrogen chloride. Macromol. Rapid Commun. 2005, 26, 1099–1103.CrossRefGoogle Scholar
  19. [19]
    Hao, Q.; Lei, W.; Xia, X.; Yan, Z.; Yang, X.; Lu, L.; Wang, X. Exchange of counter anions in electropolymerized polyaniline films. Electrochim. Acta 2010, 55, 632–640.CrossRefGoogle Scholar
  20. [20]
    Wang D.; Li F.; Zhao J.; Ren W.; Chen Z.; Tan J.; Wu Z.; Gentle I.; Lu G., Cheng H. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 2009, 3, 1745–1752.CrossRefGoogle Scholar
  21. [21]
    Murugan, A. V.; Muraliganth, T.; Manthiram, A. Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage. Chem. Mater. 2009, 21, 5004–5006.CrossRefGoogle Scholar
  22. [22]
    Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 2010, 4, 1963–1970.CrossRefGoogle Scholar
  23. [23]
    Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. Graphene oxide doped PANI for supercapacitors. Electrochem. Commun. 2009, 11, 1158–1161.CrossRefGoogle Scholar
  24. [24]
    Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang X. Effect of graphene oxide on the properties of its composite with polyaniline. ACS Appl. Mater. Interf. 2010, 2, 821–828.CrossRefGoogle Scholar
  25. [25]
    Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang X. Nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale, 2010, 2, 2164–2170.CrossRefGoogle Scholar
  26. [26]
    Huang J.; Kaner R. B. A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc., 2004, 126, 851–855CrossRefGoogle Scholar
  27. [27]
    Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; Gorchinskiy, A. D. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 1999, 11, 771–778.CrossRefGoogle Scholar
  28. [28]
    Si, Y.; Samulski, E. T. Synthesis of water soluble graphene. Nano Lett. 2008, 8, 1679–1682.CrossRefGoogle Scholar
  29. [29]
    Mi, H.; Zhang, X.; Yang, S.; Ye, X.; Luo, J. Polyaniline nanofibers as the electrode material for supercapacitors. Mater. Chem. Phys. 2008, 112, 127–131.CrossRefGoogle Scholar
  30. [30]
    Dhand, C.; Arya, S. K.; Singh, S. P.; Singh, B. P.; Datta, M.; Malhotra, B. D. Preparation of polyaniline/multiwalled carbon nanotube composite by novel electrophoretic route. Carbon 2008, 46, 1727–1735.CrossRefGoogle Scholar
  31. [31]
    Zhang, K.; Zhang, L.; Zhao, X. S.; Wu, J. Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 2010, 22, 1392–1401.CrossRefGoogle Scholar
  32. [32]
    Yan, J.; Wei, T.; Shao, B.; Fan, Z.; Qian, W.; Zhang, M.; Wei, F. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 2010, 48, 487–493.CrossRefGoogle Scholar
  33. [33]
    Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.; Wang, C.; Chen, M.; Chen Y. Supercapacitor devices based on graphene materials. J. Phys. Chem. C, 2009, 113, 13103–13107.CrossRefGoogle Scholar
  34. [34]
    Cao, Y.; Mallouk, T. E. Morphology of template-grown polyaniline nanowires and its effect on the electrochemical capacitance of nanowire arrays. Chem. Mater. 2008, 20, 5260–5265.CrossRefGoogle Scholar
  35. [35]
    Merino, C.; Soto, P.; Vilaplana-Ortego, E.; Gomez de Salazar, J. M.; Pico, F.; Rojo, J. M. Carbon nanofibres and activated carbon nanofibres as electrodes in supercapacitors. Carbon, 2005, 43, 551–557.CrossRefGoogle Scholar
  36. [36]
    Liu, X.; Pickup, P. G. Ru oxide supercapacitors with high loadings and high power and energy densities. J. Power Sources, 2008, 176, 410–416.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Key Laboratory for Soft Chemistry and Functional MaterialsNanjing University of Science and Technology, Ministry of EducationNanjingChina

Personalised recommendations