Nano Research

, Volume 4, Issue 3, pp 315–321 | Cite as

Catalyst-free growth of nanographene films on various substrates

  • Lianchang Zhang
  • Zhiwen Shi
  • Yi Wang
  • Rong Yang
  • Dongxia Shi
  • Guangyu Zhang
Research Article

Abstract

We have developed a new method to grow uniform graphene films directly on various substrates, such as insulators, semiconductors, and even metals, without using any catalyst. The growth was carried out using a remote plasma enhancement chemical vapor deposition (r-PECVD) system at relatively low temperatures, enabling the deposition of graphene films up to 4-inch wafer scale. Scanning tunneling microscopy (STM) confirmed that the films are made up of nanocrystalline graphene particles of tens of nanometers in lateral size. The growth mechanism for the nanographene is analogous to that for diamond grown by PECVD methods, in spite of sp2 carbon atoms being formed in the case of graphene rather than sp3 carbon atoms as in diamond. This growth approach is simple, low-cost, and scalable, and might have potential applications in fields such as thin film resistors, gas sensors, electrode materials, and transparent conductive films.

Keywords

Nanographene catalyst-free plasma enhancement chemical vapor deposition (PECVD) transparent and conductive film 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2010_86_MOESM1_ESM.pdf (1.2 mb)
Supplementary material, approximately 936 KB.

References

  1. [1]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  2. [2]
    Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63.CrossRefGoogle Scholar
  3. [3]
    Pisana, S.; Lazzeri, M.; Casiraghi, C.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C.; Mauri, F. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat. Mater. 2007, 6, 198–201.CrossRefGoogle Scholar
  4. [4]
    Bostwick, A.; Ohta, T.; Seyller, T.; Horn, K.; Rotenberg, E. Quasiparticle dynamics in graphene. Nat. Phys. 2007, 3, 36–40.CrossRefGoogle Scholar
  5. [5]
    Son, Y. W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.CrossRefGoogle Scholar
  6. [6]
    Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.CrossRefGoogle Scholar
  7. [7]
    Gilje, S.; Han, S.; Wang, M. S.; Wang, K. L.; Kaner, R. B. A chemical route to graphene for device applications. Nano. Lett. 2007, 7, 3394–3398.CrossRefGoogle Scholar
  8. [8]
    Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Röhr, J.; Rotenberg, E.; Schmid, A. K.; Waldmann, D.; Weber, H. B.; Thomas, S. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8, 203–207.CrossRefGoogle Scholar
  9. [9]
    Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.CrossRefGoogle Scholar
  10. [10]
    Ferralis, N.; Maboudian, R.; Carraro, C. Evidence of structural strain in epitaxial graphene layers on 6H-SiC (0001). Phys. Rev. Lett. 2008, 101, 156801.CrossRefGoogle Scholar
  11. [11]
    Sutter, P. W.; Flege, J. I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406–411.CrossRefGoogle Scholar
  12. [12]
    Marchini, S.; Gunther, S.; Wintterlin, J. Scanning tunneling microscopy of graphene on Ru (0001). Phys. Rev. B 2007, 76, 075429.CrossRefGoogle Scholar
  13. [13]
    Dedkov, Y. S.; Fonin, M.; Ruediger, U.; Laubschat, C. Rashba effect in the graphene/Ni(111) ststem. Phys. Rev. Lett. 2008, 100, 107602.CrossRefGoogle Scholar
  14. [14]
    N’Diaye, A. T.; Bleikamp, S.; Feibelman, P. J.; Michely, T. Two-dimensional Ir cluster lattice on a graphene moiré in Ir(111). Phys. Rev. Lett. 2006, 97, 215501.CrossRefGoogle Scholar
  15. [15]
    Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.CrossRefGoogle Scholar
  16. [16]
    Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.CrossRefGoogle Scholar
  17. [17]
    Yu, Q.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S. S. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 2008, 93, 113103.CrossRefGoogle Scholar
  18. [18]
    Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R. D.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-area synthesis of high quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.CrossRefGoogle Scholar
  19. [19]
    Alfonso, R.; Son, H.; Jiao, L. Y.; Fan, B.; Dresselhaus, M. S.; Liu, Z. F.; Kong, J. Transferring and identification of single- and few-layer graphene on arbitrary substrates. J. Phys. Chem. C 2008, 112, 17741–17744.CrossRefGoogle Scholar
  20. [20]
    Ismach, A.; Druzgalski, C.; Penwell, S.; Schwartzberg, A.; Zheng, M.; Javey, A.; Bokor, J.; Zhang, Y. G. Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett. 2010, 10, 1542–1548.CrossRefGoogle Scholar
  21. [21]
    Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Röhr, J.; Rotenberg, E.; Schmid, A. K.; Waldmann, D.; Weber, H. B.; Seyller, T. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8, 203–207.CrossRefGoogle Scholar
  22. [22]
    Nikitin, A.; Näslund, L. A.; Zhang, Z.; Nilsson, A. C-H bond formation at the graphite surface studied with core level spectroscopy. Surface Science 2008, 602, 2575–2580.CrossRefGoogle Scholar
  23. [23]
    Mikami, T.; Nakazawa, H.; Kudo, M.; Mashita, M. Effect of hydrogen on film properties of diamond-like carbon films prepared by reactive radio-frequency magnetron sputtering using hydrogen gas. Thin Solid Films 2005, 488, 87–92.CrossRefGoogle Scholar
  24. [24]
    Mérel, P.; Tabbal, M.; Chaker, M.; Moisa, S.; Margot, J. Direct evaluation of the sp3 content in diamond-like-carbon films by XPS. Appl. Surf. Sci. 1998, 136, 105–110.CrossRefGoogle Scholar
  25. [25]
    May, P. W.; Harvey, J. N.; Smith, J. A.; Mankelevich, Y. A. Re-evaluation of the mechanism of ultrananocrystalline diamond deposition from Ar/CH4/H2 gas mixtures. J. Appl. Phys. 2006, 99, 104907.CrossRefGoogle Scholar
  26. [26]
    Mankelevich, Y. A.; May, P. W. New insights into the mechanism of CVD diamond growth: Singlecrystal diamond in MWPECVD reactors. Diamond Relat. Mater. 2008, 17, 1021–1028.CrossRefGoogle Scholar
  27. [27]
    Lee, S. T.; Lin, Z.; Jiang, X. CVD diamond films: Nucleation and growth. Mater. Sci. Eng., R 1999, 25, 123–154.CrossRefGoogle Scholar
  28. [28]
    Cheianov, V. V.; Fal’ko, V. I. Friedel oscillations, impurity scattering, and temperature dependence of resistivity in graphene. Phys. Rev. Lett. 2006, 97, 226801.CrossRefGoogle Scholar
  29. [29]
    Shao, Q.; Liu, G.; Teweldebrhan, D.; Balandin, A. A. High-temperature quenching of electrical resistance in graphene interconnects. Appl. Phys. Lett. 2008, 92, 202108.CrossRefGoogle Scholar
  30. [30]
    Bao, W. Z.; Miao, F.; Chen, Z.; Zhang, H.; Jang, W. Y.; Dames, C.; Lau, C. N. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat. Nanotechnol. 2009, 4, 562–566.CrossRefGoogle Scholar
  31. [31]
    Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.CrossRefGoogle Scholar
  32. [32]
    Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E. G.; Dai, H. J. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 2008, 3, 538–542.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Lianchang Zhang
    • 1
  • Zhiwen Shi
    • 1
    • 2
  • Yi Wang
    • 1
    • 2
  • Rong Yang
    • 1
  • Dongxia Shi
    • 1
  • Guangyu Zhang
    • 1
  1. 1.Nanoscale Physics and Device Lab, Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Surface Physics Lab, Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations