Nano Research

, Volume 4, Issue 3, pp 308–314 | Cite as

Linear strain-gradient effect on the energy bandgap in bent CdS nanowires

  • Qiang Fu
  • Zi Yue Zhang
  • Liangzhi Kou
  • Peicai Wu
  • Xiaobing Han
  • Xinli Zhu
  • Jingyun Gao
  • Jun Xu
  • Qing Zhao
  • Wanlin Guo
  • Dapeng Yu
Research Article

Abstract

Although possible non-homogeneous strain effects in semiconductors have been investigated for over a half century and the strain-gradient can be over 1% per micrometer in flexible nanostructures, we still lack an understanding of their influence on energy bands. Here we conduct a systematic cathodoluminescence spectroscopy study of the strain-gradient induced exciton energy shift in elastically curved CdS nanowires at low temperature, and find that the red-shift of the exciton energy in the curved nanowires is proportional to the strain-gradient, an index of lattice distortion. Density functional calculations show the same trend of band gap reduction in curved nanostructures and reveal the underlying mechanism. The significant linear strain-gradient effect on the band gap of semiconductors should shed new light on ways to tune optical-electronic properties in nanoelectronics.

Keywords

Strain-gradient effect CdS nanowire bending deformation cathodoluminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2010_85_MOESM1_ESM.pdf (797 kb)
Supplementary material, approximately 1.06 MB.

References

  1. [1]
    Leong, M.; Doris, B.; Kedzierski, J.; Rim, K.; Yang, M. Silicon device scaling to the Sub-10-nm regime. Science 2004, 306, 2057–2060.CrossRefGoogle Scholar
  2. [2]
    Cao, J.; Ertekin, E.; Srinivasan, V.; Fan, W.; Huang, S.; Zheng, H.; Yim, J. W. L.; Khanal, D. R.; Ogletree, D. F.; Grossman, J. C., et al. Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams. Nat. Nanotechnol. 2009, 4, 732–737.CrossRefGoogle Scholar
  3. [3]
    Xu, S.; Qin, Y.; Xu, C.; Wei, Y. G.; Yang, R.; Wang, Z. L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373.CrossRefGoogle Scholar
  4. [4]
    He, J.; Lilley, C. M. Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 2008, 8, 1798–1802.CrossRefGoogle Scholar
  5. [5]
    Zhang, Y. F.; Han, X. D.; Zheng, K.; Zhang, Z.; Zhang, X. N.; Fu, J. Y.; Ji, Y.; Hao, Y. J.; Guo, X. Y.; Wang, Z. L. Direct observation of super-plasticity of beta-SiC nanowires at low temperature. Adv. Funct. Mater. 2007, 17, 3435–3440.CrossRefGoogle Scholar
  6. [6]
    Han, X. B.; Kou, L. Z.; Lang, X. L.; Xia, J. B.; Wang, N.; Qin, R.; Xu, J.; Liao, Z. M.; Zhang, X. Z.; Shan, X. D., et al. Electronic and mechanical coupling in bent ZnO nanowires. Adv. Mater. 2009, 21, 4937–4941.CrossRefGoogle Scholar
  7. [7]
    Trauernicht, D. P.; Mysyrowicz, A.; Wolfe, J. P. Strain confinement and thermodynamics of free excitons in a direct-gap semiconductor. Phys. Rev. Lett. 1983, 28, 3590–3592.Google Scholar
  8. [8]
    Zhou, J.; Gu, Y. D.; Fei, P.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z. L. Flexible piezotronic strain sensor. Nano Lett. 2008, 8, 3035–3040.CrossRefGoogle Scholar
  9. [9]
    Cross, L. E. Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients. J. Mater. Sci. 2006, 41, 53–63.CrossRefGoogle Scholar
  10. [10]
    Raffaele, R. Towards a bulk theory of flexoelectricity. Phys. Rev. Lett. 2010, 105, 127601.CrossRefGoogle Scholar
  11. [11]
    Ma, R. M.; Dai, L.; Qin, G. G. High-performance nano-Schottky diodes and nano-MESFETs made on single CdS nanobelts. Nano Lett. 2007, 7, 868–873.CrossRefGoogle Scholar
  12. [12]
    Oulton, R. F.; Sorger, V. J.; Zentgraf, T.; Ma, R. M.; Gladden, C.; Dai, L.; Bartal, G.; Zhang, X. Plasmon lasers at deep subwavelength scale. Nature 2009, 461, 630–632.CrossRefGoogle Scholar
  13. [13]
    Zhang, M.; Zhai, T. Y.; Wang, X.; Liao, Q.; Ma, Y.; Yao, J. N. Carbon-assisted morphological manipulation of CdS nanostructures and their cathodoluminescence properties. J. Solid State Chem. 2009, 182, 3188–3194.CrossRefGoogle Scholar
  14. [14]
    Titova, L. V.; Hoang, T. B.; Jackson, H. E.; Smith, L. M.; Yarrison-Rice, J. M.; Lensch, J. L.; Lauhon, L. J. Low-temperature photoluminescence imaging and time-resolved spectroscopy of single CdS nanowires. Appl. Phys. Lett. 2006, 89, 053119.CrossRefGoogle Scholar
  15. [15]
    Zhou, W. C.; Pan, A.; Li, Y.; Dai, G. Z.; Wan, Q.; Zhang, Q. L.; Zou, B. S. Controllable fabrication of high-quality 6-fold symmetry-branched CdS nanostructures with ZnS nanowires as templates. J. Phys. Chem. C 2008, 112, 9253–9260.CrossRefGoogle Scholar
  16. [16]
    Smith, A. M.; Mohs, A. M.; Nie, S. M. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat. Nanotechnol. 2009, 4, 56–63.CrossRefGoogle Scholar
  17. [17]
    Niles, D. W.; Höchst, H. Strain-induced changes in the electronic valence-band structure of a cubic CdS(100) film. Phys. Rev. B 1991, 44, 10965–10968.CrossRefGoogle Scholar
  18. [18]
    Wu, P. C.; Ye, Y.; Sun, T.; Peng, R. M.; Wen, X. N.; Xu, W. J.; Liu, C.; Dai, L. Ultrahigh-performance inverters based on CdS nanobelts. ACS Nano 2009, 3, 3138–3142.CrossRefGoogle Scholar
  19. [19]
    Han, X. D.; Zhang, Y. F.; Zhang, X. N.; Zhang, Z.; Hao, Y. J.; Guo, X. Y.; Yuan, J.; Wang, Z. L. Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. Nano Lett. 2007, 7, 452–457.CrossRefGoogle Scholar
  20. [20]
    Titova, L. V.; Hoang, T. B.; Jackon, H. E.; Smith, L. M. Low-temperature photoluminescence imaging and time-resolved spectroscopy of single CdS nanowires. Appl. Phys. Lett. 2006, 89, 053119.CrossRefGoogle Scholar
  21. [21]
    Xu, J.; Chen, L.; Yu, L. S.; Liang, H.; Zhang, B. S.; Lau, K. M. Cathodoluminescence study of InGaN/GaN quantum-well LED structures grown on a Si substrate. J. Electron. Mater. 2007, 36, 1144–1147.CrossRefGoogle Scholar
  22. [22]
    Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter. 2002, 14, 2745–2779.CrossRefGoogle Scholar
  23. [23]
    Bryant, F. J.; Radford, C. J. Electron radiation damage and the green edge emission of CdS. J. Phys. C: Solid State Phys. 1970, 3, 1264–1274.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Qiang Fu
    • 1
  • Zi Yue Zhang
    • 2
  • Liangzhi Kou
    • 2
  • Peicai Wu
    • 1
  • Xiaobing Han
    • 1
  • Xinli Zhu
    • 1
  • Jingyun Gao
    • 1
  • Jun Xu
    • 1
  • Qing Zhao
    • 1
  • Wanlin Guo
    • 2
  • Dapeng Yu
    • 1
  1. 1.State Key Laboratory for Mesoscopic Physics, and Electron Microscopy Laboratory, Department of PhysicsPeking UniversityBeijingChina
  2. 2.Institute of NanoscienceNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations