Nano Research

, Volume 4, Issue 3, pp 290–296 | Cite as

Hybrid silicon-carbon nanostructured composites as superior anodes for lithium ion batteries

  • Po-Chiang Chen
  • Jing Xu
  • Haitian Chen
  • Chongwu Zhou
Research Article

Abstract

We have successfully fabricated a hybrid silicon-carbon nanostructured composite with large area (about 25.5 in2) in a simple fashion using a conventional sputtering system. When used as the anode in lithium ion batteries, the uniformly deposited amorphous silicon (a-Si) works as the active material to store electrical energy, and the pre-coated carbon nanofibers (CNFs) serve as both the electron conducting pathway and a strain/stress relaxation layer for the sputtered a-Si layers during the intercalation process of lithium ions. As a result, the as-fabricated lithium ion batteries, with deposited a-Si thicknesses of 200 nm or 300 nm, not only exhibit a high specific capacity of >2000 mA·h/g, but also show a good capacity retention of over 80% and Coulombic efficiency of >98% after a large number of charge/discharge experiments. Our approach offers an efficient and scalable method to obtain silicon-carbon nanostructured composites for application in lithium ion batteries.

Keywords

Amorphous silicon carbon nanofibers lithium ion batteries hybrid nanostructured composite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Winter, M.; Brodd, R. J. What are batteries, fuel cells, and supercapacitors. Chem. Rev. 2004, 104, 4245–4270.CrossRefGoogle Scholar
  2. [2]
    Kang, K.; Meng, Y. S.; Bréger, J.; Grey, C. P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977–980.CrossRefGoogle Scholar
  3. [3]
    Yoon, J.; Baca, A. J.; Park, S. -I.; Elvikis, P.; Geddes, J. B. III; Li, L.; Kim, R. H.; Xiao, J.; Wang, S.; Kim, T. -H.; Motala, M. J.; Ahn, B. Y.; Duoss, E. B.; Lewis, J. A.; Nuzzo, R. G.; Ferreira, P. M.; Huang, Y.; Rockett, A.; Rogers, J. A. Ultrathinsilicon solar microcells for semitransparent, mechanically flexible and microconcentratormoduledesigns. Nat. Mater. 2008, 7, 907–915.CrossRefGoogle Scholar
  4. [4]
    Armand, M.; Tarascon, J. -M. Building better batteries. Nature 2008, 451, 652–657.CrossRefGoogle Scholar
  5. [5]
    Boettcher, S. W.; Spurgeon, J. M.; Putnam, M. C.; Warren, E. L.; Turner-Evans, D. B.; Kelzenberg, M. D.; Maiolo J. R.; Awater, H. A.; Lewis, N. S. Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes. Science 2010, 327, 185–187.CrossRefGoogle Scholar
  6. [6]
    Long, J. W.; Dunn, B.; Rolison, D. R.; White, H. S. Threedimensional battery architectures. Chem. Rev. 2004, 104, 4463–4492.CrossRefGoogle Scholar
  7. [7]
    Liu, J.; Cao, G.; Yang, Z.; Wang, D.; Dubois, D.; Zhou, X.; Graff, G. L.; Pederson, L. R.; Zhang, J. -G. Oriented nanostructures for energy conversion and storage. ChemSusChem 2008, 1, 676–697.CrossRefGoogle Scholar
  8. [8]
    Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.CrossRefGoogle Scholar
  9. [9]
    Jiang, C.; Hosono, E.; Zhou, H. E. Nanomaterials for lithium ion batteries. Nano Today 2006, 1, 28–33.CrossRefGoogle Scholar
  10. [10]
    Poizot. P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, T. -M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.CrossRefGoogle Scholar
  11. [11]
    Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, T. -M.; Schalkwijk, W. V. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.CrossRefGoogle Scholar
  12. [12]
    Chan, C. K.; Peng, H.; Liu, G.; Mcilwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.CrossRefGoogle Scholar
  13. [13]
    Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Silicon nanotube battery anodes. Nano Lett. 2009, 9, 3844–3847.CrossRefGoogle Scholar
  14. [14]
    Song, T.; Xia, J.; Lee J. -H.; Lee, D. H.; Kwon, M. -S.; Choi, J. -M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W. I.; Zang, D. S.; Kim, H.; Huang, Y.; Hwang, K.-C.; Rogers, J. A.; Paik, U. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 2010, 10, 1710–1716.CrossRefGoogle Scholar
  15. [15]
    Cho, J. Porous Si anode materials for lithium rechargeable batteries. J. Mater. Chem. 2010, 20, 4009–4014.CrossRefGoogle Scholar
  16. [16]
    Kim, H.; Han, B.; Choo J.; Cho, J. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Ed. 2008, 47, 10151–10154.CrossRefGoogle Scholar
  17. [17]
    Kim, H.; Cho, J. Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material. Nano Lett. 2008, 8, 3688–3691CrossRefGoogle Scholar
  18. [18]
    Kim, H; Seo, M.; Park, M. -H.; Cho, J. A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew. Chem. Int. Ed. 2010, 49, 2146–2149.CrossRefGoogle Scholar
  19. [19]
    Cui, L. F.; Hu, L. B.; Choi, J. K.; Cui, Y. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. ACS Nano 2010, 4, 3671–3678CrossRefGoogle Scholar
  20. [20]
    Choi, J. W.; Hu, L. B.; Cui, L. F.; McDonough, J. R.; Cui, Y. Metal current collector-free freestanding silicon-carbon 1D nanocomposites for ultralight anodes in lithium ion batteries. J. Power Sources 2010, 195, 8311–8316CrossRefGoogle Scholar
  21. [21]
    Zhou, S.; Liu, Z.; Wang, D. Si/TiSi2 heteronanostructures as high-capacity anode material for Li ion batteries. Nano Lett. 2010, 10, 860–863.CrossRefGoogle Scholar
  22. [22]
    Cui, L. F.; Yang, Y.; Hsu, C. M.; Cui, Y. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett. 2009, 9, 3370–3374.CrossRefGoogle Scholar
  23. [23]
    Wang, L.; Ding, C. X.; Zhang, L. C.; Xu, H. W.; Zhang, D. W.; Cheng, T.; Chen, C. H. A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries. J. Power Sources 2010, 195, 5052–5056.CrossRefGoogle Scholar
  24. [24]
    Wang, W.; Kumta, P. N. Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes. ACS Nano 2010, 4, 2233–2241.CrossRefGoogle Scholar
  25. [25]
    Luo, Z.; Fan, D.; Liu, X.; Mao, H.; Yao, C.; Deng, Z. High performance silicon carbon composite anode materials for lithium ion batteries. J. Power Sources 2009, 189, 16–21.CrossRefGoogle Scholar
  26. [26]
    Saint, J.; Morcrette, M.; Larcher, D.; Laffont, L.; Beattie, S.; Peres, J. -P.; Talaga, D.; Couzi, M.; Tarascon, J. -M. Towards a fundamental understanding of the improved electrochemical performance of silicon-carbon composites. Adv. Funct. Mater. 2007, 17, 1765–1774.CrossRefGoogle Scholar
  27. [27]
    Cui, L. F.; Ruffo, R.; Chan, C. K.; Peng, H. L.; Cui, Y. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 2009, 9, 491–495.CrossRefGoogle Scholar
  28. [28]
    Baranchugov, V.; Markevich, E.; Pollak, E.; Salitra, G.; Aurbach, D. Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes. Electrochem. Commun. 2007, 9, 796–800.CrossRefGoogle Scholar
  29. [29]
    Lee, K. -L.; Jung, J. -Y.; Lee, S. -W.; Moon, H. -S.; Park, J. -W. Electrochemical characteristics and cycle performance of LiMn2O4/a-Si microbattery. J. Power Sources 2004, 130, 241–261.CrossRefGoogle Scholar
  30. [30]
    Zaghib, K.; Tatsumi, K.; Abe, H.; Ohsaki, T.; Sawada, Y.; Higuchi, S. Optimization of the dimensions of vapor-grown carbon fiber for use as negative electrodes in lithium-ion rechargeable cells. J. Electrochem. Soc. 1998, 145, 210–215.CrossRefGoogle Scholar
  31. [31]
    Takamura, T.; Ohara, S.; Uehar, M.; Suzuki, J.; Sekine, K. A vacuum deposited Si film having a Li extraction capacity over 2000 mA·h/g with a long cycle life. J. Power Sources 2004, 129, 96–100.CrossRefGoogle Scholar
  32. [32]
    Ohara, S.; Suzuki, J.; Sekine, K.; Takamura, T. A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life. J. Power Sources 2004, 136, 303–306.CrossRefGoogle Scholar
  33. [33]
    Rong, J. P.; Masarapu, C.; Ni, J.; Zhang, Z. J.; Wei, B. Q. Tandem structure of porous silicon film on single-walled carbon nanotube macrofilms for lithium-ion battery applications. ACS Nano 2010, 4, 4683–4690.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Po-Chiang Chen
    • 1
  • Jing Xu
    • 1
  • Haitian Chen
    • 2
  • Chongwu Zhou
    • 2
  1. 1.Mork Family Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Ming-Hsieh Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations