Nano Research

, Volume 4, Issue 3, pp 284–289 | Cite as

Vibrating carbon nanotubes as water pumps

Research Article

Abstract

Nanopumps conducting fluids directionally through nanopores and nanochannels have attracted considerable interest for their potential applications in nanofiltration, water purification, and hydroelectric power generation. Here, we demonstrate by molecular dynamics simulations that an excited vibrating carbon nanotube (CNT) cantilever can act as an efficient and simple nanopump. Water molecules inside the vibrating cantilever are driven by centrifugal forces and can undergo a continuous flow from the fixed to free ends of the CNT. Further extensive simulations show that the pumping function holds good not only for a single-file water chain in a narrow (6,6) CNT, but also for bulk-like water columns inside wider CNTs, and that the water flux increases monotonically with increasing diameter of the nanotube.

Keywords

Nanopump carbon nanotube nanofluidics centrifugal forces water dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2010_80_MOESM1_ESM.pdf (300 kb)
Supplementary material, approximately 298 KB.

References

  1. [1]
    Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310.CrossRefGoogle Scholar
  2. [2]
    Yuan, Q. Z.; Zhao, Y. P. Hydroelectric voltage generation based on water-filled single-walled carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 6374–6376.CrossRefGoogle Scholar
  3. [3]
    Zhao, Y. C.; Song, L.; Deng, K.; Liu, Z.; Zhang, Z. X.; Yang, Y. L.; Wang, C.; Yang, H. F.; Jin, A. Z.; Luo, Q.; Gu, C. Z.; Xie, S. S.; Sun, L. F. Individual water-filled single-walled carbon nanotubes as hydroelectric power converters. Adv. Mater. 2008, 20, 1772–1776.CrossRefGoogle Scholar
  4. [4]
    Service, R. F. Desalination freshens up. Science 2006, 313, 1088–1090.CrossRefGoogle Scholar
  5. [5]
    Zambrano, H. A.; Walther, J. H.; Koumoutsakos, P.; Sbalzarini, I. F. Thermophoretic motion of water nanodroplets confined inside carbon nanotubes. Nano Lett. 2009, 9, 66–71.CrossRefGoogle Scholar
  6. [6]
    Longhurst, M. J.; Quirke, N. Temperature-driven pumping of fluid through single-walled carbon nanotubes. Nano Lett. 2007, 7, 3324–3328.CrossRefGoogle Scholar
  7. [7]
    Dai, Y.; Tang, C.; Guo, W. Simulation studies of a “nanogun” based on carbon nanotubes. Nano Res. 2008, 1, 176–183.CrossRefGoogle Scholar
  8. [8]
    Wang, Q. Atomic transportation via carbon nanotubes. Nano Lett. 2009, 9, 245–249.CrossRefGoogle Scholar
  9. [9]
    Duan, W. H.; Wang, Q. Water transport with a carbon nanotube pump. ACS Nano 2010, 4, 2338–2344.CrossRefGoogle Scholar
  10. [10]
    Chang, T. Dominoes in carbon nanotubes. Phys. Rev. Lett. 2008, 101, 175501.CrossRefGoogle Scholar
  11. [11]
    Chen, M.; Zang, J.; Xiao, D.; Zhang, C.; Liu, F. Nanopumping molecules via a carbon nanotube. Nano Res. 2009, 2, 938–944.CrossRefGoogle Scholar
  12. [12]
    Zuo, G.; Shen, R.; Ma, S.; Guo, W. Transport properties of single-file water molecules inside a carbon nanotube biomimicking water channel. ACS Nano 2010, 4, 205–210.CrossRefGoogle Scholar
  13. [13]
    Gong, X. J.; Li, J. Y.; Lu, H. J.; Wan, R. Z.; Li, J. C.; Hu, J.; Fang, H. P. A charge-driven molecular water pump. Nature Nanotech. 2007, 2, 709–712.CrossRefGoogle Scholar
  14. [14]
    Sazonova, V.; Yaish, Y.; Ustunel, H.; Roundy, D.; Arias, T. A.; McEuen, P. L. A tunable carbon nanotube electromechanical oscillator. Nature 2004, 431, 284–287.CrossRefGoogle Scholar
  15. [15]
    Garcia-Sanchez, D.; Paulo, A. S.; Esplandiu, M. J.; Perez-Murano, F.; Forro, L.; Aguasca, A.; Bachtold, A. Mechanical detection of carbon nanotube resonator vibrations. Phys. Rev. Lett. 2007, 99, 085501.CrossRefGoogle Scholar
  16. [16]
    Poncharal, P.; Wang, Z. L.; Ugarte, D.; de Heer, W. A. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 1999, 283, 1513–1516.CrossRefGoogle Scholar
  17. [17]
    Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680.CrossRefGoogle Scholar
  18. [18]
    Babic, B.; Furer, J.; Sahoo, S.; Farhangfar, S.; Schonenberger, C. Intrinsic thermal vibrations of suspended doubly clamped single-wall carbon nanotubes. Nano Lett. 2003, 3, 1577–1580.CrossRefGoogle Scholar
  19. [19]
    Jensen, K.; Kim, K.; Zettl, A. An atomic-resolution nanomechanical mass sensor. Nature Nanotech. 2008, 3, 533–537.CrossRefGoogle Scholar
  20. [20]
    Jensen, K.; Weldon, J.; Garcia, H.; Zettl, A. Nanotube radio. Nano Lett. 2007, 7, 3508–3511.CrossRefGoogle Scholar
  21. [21]
    Kale, L.; Skeel, R.; Bhandarkar, M.; Brunner, R.; Gursoy, A.; Krawetz, N.; Phillips, J.; Shinozaki, A.; Varadarajan, K.; Schulten, K. NAMD2: Greater scalability for parallel molecular dynamics. J. Comp. Phys. 1999, 151, 283–312.CrossRefGoogle Scholar
  22. [22]
    Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.CrossRefGoogle Scholar
  23. [23]
    MacKerell, A. D. Jr.; Bashford, D.; Bellott, M.; Dunbrack, R. L. Jr.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 1998, 102, 3586–3616.CrossRefGoogle Scholar
  24. [24]
    Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935.CrossRefGoogle Scholar
  25. [25]
    Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A smooth particle mesh ewald method. J. Chem. Phys. 1995, 103, 8577–8593.CrossRefGoogle Scholar
  26. [26]
    Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 2001, 414, 188–190.CrossRefGoogle Scholar
  27. [27]
    de Groot, B. L.; Grubmuller, H. Water permeation across biological membranes: Mechanism and dynamics of aquaporin-1 and GlpF. Science 2001, 294, 2353–2357.CrossRefGoogle Scholar
  28. [28]
    Qiu, H.; Ma, S.; Shen, R.; Guo, W. Dynamic and energetic mechanisms for the distinct permeation rate in AQP1 and AQP0. Biochim. Biophys. Acta. 2010, 1798, 318–326.CrossRefGoogle Scholar
  29. [29]
    Holt, J. K. Carbon nanotubes and nanofluidic transport. Adv. Mater. 2009, 21, 3542–3550.CrossRefGoogle Scholar
  30. [30]
    Holt, J. K.; Park, H. G.; Wang, Y.; Stadermann, M.; Artyukhin, A. B.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 2006, 312, 1034–1037.CrossRefGoogle Scholar
  31. [31]
    Jensen, M. O.; Tajkhorshid, E.; Schulten, K. Electrostatic tuning of permeation and selectivity in aquaporin water channels. Biophys. J. 2003, 85, 2884–2899.CrossRefGoogle Scholar
  32. [32]
    Majumder, M.; Chopra, N.; Andrews, R.; Hinds, B. J. Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes. Nature 2005, 438, 44.CrossRefGoogle Scholar
  33. [33]
    Thomas, J. A.; McGaughey, A. J. H. Water flow in carbon nanotubes: Transition to subcontinuum transport. Phys. Rev. Lett. 2009, 102, 184502.CrossRefGoogle Scholar
  34. [34]
    Corry, B. Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B 2008, 112, 1427–1434.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institute of Nano ScienceNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations