Nano Research

, Volume 4, Issue 3, pp 274–283

A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange

  • Haijiao Zhang
  • Panpan Xu
  • Guidong Du
  • Zhiwen Chen
  • Kokyo Oh
  • Dengyu Pan
  • Zheng Jiao
Research Article
  • 1.7k Downloads

Abstract

TiO2/graphene composite photocatalysts have been prepared by a simple liquid phase deposition method using titanium tetrafluoride and electron beam (EB) irradiation-pretreated graphene as the raw materials. The products were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The effects of varying the synthesis parameters such as graphene content, concentration of titanium tetrafluoride solution and irradiation dose were investigated. It was found that the preparation conditions had a significant effect on the structure and properties of the final products. The irradiated graphene was covered with petal-like anatase TiO2 nanoparticles, which were more uniform and smaller in size than those in products synthesized without EB irradiation-pretreated graphene. The photocatalytic activities of the products were evaluated using the photocatalytic degradation of methyl orange as a probe reaction. The results showed that the products synthesized using EB irradiation-pretreated graphene exhibited higher photocatalytic activities than those using graphene without EB irradiation pretreatment.

Keywords

TiO2/graphene composites electron beam (EB) irradiation photocatalytic degradation methyl orange 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2010_79_MOESM1_ESM.pdf (434 kb)
Supplementary material, approximately 433 KB.

References

  1. [1]
    Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemannt, D. W. Environmental applications of semiconductor photocatalysts. Chem. Rev. 1995, 95, 69–96.CrossRefGoogle Scholar
  2. [2]
    Fukahori, S.; Ichiura, H.; Kitaoka, T.; Tanaka, H. Photocatalytic decomposition of bisphenol A in water using composite TiO2-zeolite sheets prepared by a papermaking technique. Environ. Sci. Technol. 2003, 37, 1048–1051.CrossRefGoogle Scholar
  3. [3]
    Fujishima, A.; Rao, T. N.; Tryk, D. A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev. 2000, 1, 1–21.CrossRefGoogle Scholar
  4. [4]
    Chen, C.; Li, X.; Ma, W.; Zhao, J.; Hidaka, H.; Serpone, N. Effect of transition metal ions on the TiO2-assisted photo-degradation of dyes under visible irradiation: A probe for the interfacial electron transfer process and reaction mechanism. J. Phys. Chem. B 2002, 106, 318–324.CrossRefGoogle Scholar
  5. [5]
    Paola, A. D.; Marci, G.; Palmisano, L.; Schiavello, M.; Uosaki, K.; Ikeda, S.; Ohtani, B. Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions: Characterization and photocatalytic activity for the degradation of 4-nitrophenol. J. Phys. Chem. B 2002, 106, 637–645.CrossRefGoogle Scholar
  6. [6]
    Yu, J. C.; Yu, J.; Ho, W.; Jiang, Z.; Zhang, L. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 2002, 14, 3808–3816.CrossRefGoogle Scholar
  7. [7]
    Mu, W.; Herrmann, J. M.; Pichat, P. Room temperature photocatalytic oxidation of liquid cyclohexane into cyclohexanone over neat and modified TiO2. Catal. Lett. 1989, 3, 73–84.CrossRefGoogle Scholar
  8. [8]
    Robert, D.; Piscopo, A.; Heintz, O.; Weber, J. V. Photocatalytic detoxification with TiO2 supported on glass-fibre by using artificial and natural light. Catal. Today 1999, 54, 291–296.CrossRefGoogle Scholar
  9. [9]
    Fernández, A.; Lassaletta, G.; Jiménez, V. M.; Justo, A.; González-Elipe, A. R.; Herrmann, J. -M.; Tahiri, H.; Ait-Ichou, Y. Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Appl. Catal. B: Environ. 1995, 7, 49–63.CrossRefGoogle Scholar
  10. [10]
    Minero, C.; Catozzo, F.; Pelizzetti, E. Role of adsorption in photocatalyzed reactions of organic molecules in aqueous titania suspensions. Langmuir 1992, 8, 481–486.CrossRefGoogle Scholar
  11. [11]
    Takeda, N.; Torimoto, T.; Sampath, S.; Kuwabata, S.; Yoneyama, H. Effect of inert supports for titanium dioxide loading on enhancement of photodecomposition rate of gaseous propionaldehyde. J. Phys. Chem. 1995, 99, 9986–9991.CrossRefGoogle Scholar
  12. [12]
    Tanguay, J. F.; Suib, S. L.; Coughlin, R. W. Dichloromethane photodegradation using titanium catalysts. J. Catal. 1989, 117, 335–347.CrossRefGoogle Scholar
  13. [13]
    Woan, K.; Pyrgiotakis, G.; Sigmund, W. Photocatalytic carbon-nanotube-TiO2 composites. Adv. Mater. 2009, 21, 2233–2239.CrossRefGoogle Scholar
  14. [14]
    Yu, Y.; Yu, J. C.; Yu, J. G.; Kwok, Y. C.; Che, Y. K.; Zhao, J. C.; Ding, L.; Ge, W. -K.; Wong, P. -K. Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl. Catal. A: Gen. 2005, 289, 186–189.CrossRefGoogle Scholar
  15. [15]
    Liu, B.; Zeng, H. C. Carbon nanotubes supported mesoporous mesocrystals of anatase TiO2. Chem. Mater. 2008, 20, 2711–2719.CrossRefGoogle Scholar
  16. [16]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  17. [17]
    Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63.CrossRefGoogle Scholar
  18. [18]
    Charlier, J. C.; Eklund, P. C.; Zhu, J.; Ferrari, A. C. Electron and phonon properties of graphene: Their relationship with carbon nanotubes. In Topics in Applied Physics; Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S., Eds.; Springer: Berlin (Heidelberg), 2008; pp. 673–709.Google Scholar
  19. [19]
    Barone, V.; Hod, O.; Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 2006, 6, 2748–2754.CrossRefGoogle Scholar
  20. [20]
    Frank, I. W.; Tanenbaum, D. M.; van der Zande, A. M.; McEuen, P. L. Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol. B 2007, 25, 2558–2561.CrossRefGoogle Scholar
  21. [21]
    Akturk, A.; Goldsman, N. Electron transport and full-band electron-phonon interactions in graphene. J. Appl. Phys. 2008, 103, 053702.CrossRefGoogle Scholar
  22. [22]
    Peigney, A.; Laurent, C.; Flahaut, E.; Bacsa, R. R.; Rousset, A. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 2001, 39, 507–514.CrossRefGoogle Scholar
  23. [23]
    Williams, G.; Seger, B.; Kamat, P. V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008, 2, 1487–1491.CrossRefGoogle Scholar
  24. [24]
    Wang, D.; Choi, D.; Li, J.; Yang, Z.; Nie, Z.; Kou, R.; Hu, D.; Wang, C.; Saraf, L. V.; Zhang, J.; Aksay, I. A.; Liu, J. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 2009, 3, 907–914.CrossRefGoogle Scholar
  25. [25]
    Zhang, H.; Lv, X. J.; Li, Y. M.; Wang, Y.; Li, J. H. P25-graphene composite as a high performance photocatalyst. ACS Nano 2010, 4, 380–386.CrossRefGoogle Scholar
  26. [26]
    Xu, Y. X.; Bai, H.; Lu, G. W.; Li, C.; Shi, G. Q. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856–5857.CrossRefGoogle Scholar
  27. [27]
    Akhavan, O. The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon 2010, 48, 509–519CrossRefGoogle Scholar
  28. [28]
    Yang, D. X.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 2009, 47, 145–152.CrossRefGoogle Scholar
  29. [29]
    Akhavan, O. Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol. Carbon 2011, 49, 11–18.CrossRefGoogle Scholar
  30. [30]
    Akhavan, O. Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 2010, 4, 4174–4180.CrossRefGoogle Scholar
  31. [31]
    Lambert, T. N.; Chavez, C. A.; Hernandez-Sanchez, B.; Lu, P.; Bell, N. S.; Ambrosini, A. Synthesis and characterization of titania-graphene nanocomposites. J. Phys. Chem. C 2009, 113, 19812–19823.CrossRefGoogle Scholar
  32. [32]
    Falaras, P.; Hugot-Le Goff, A.; Bernard, M. C.; Xagas, A. Characterization by resonance Raman spectroscopy of sol-gel TiO2 films sensitized by the Ru(PPh3)2(dcbipy)Cl2 complex for solar cells application. Sol. Energy Mater. Sol. Cells 2000, 64, 167–182.CrossRefGoogle Scholar
  33. [33]
    Tuinstra, F.; Koenig, J. L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126–1130.CrossRefGoogle Scholar
  34. [34]
    Akhavan, O.; Ghaderi, E. Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J. Phys. Chem. C 2009, 113, 20214–20220.CrossRefGoogle Scholar
  35. [35]
    Akhavan, O.; Abdolahad, M.; Esfandiar, A.; Mohatashamifar, M. Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic reduction. J. Phys. Chem. C 2010, 114, 12955–12959.CrossRefGoogle Scholar
  36. [36]
    Teweldebrhan, D.; Balandin, A. A. Modification of graphene properties due to electron-beam irradiation. Appl. Phys. Lett. 2009, 94, 013101.CrossRefGoogle Scholar
  37. [37]
    Kim, K.; Choi, J.; Lee, H.; Lee, H. K.; Kang, T. H.; Han, Y. H.; Lee, B. C.; Kim, S.; Kim, B. Effects of 1 MeV electron beam irradiation on multilayer graphene grown on 6H-SiC(0001). J. Phys. Chem. C 2008, 112, 13062–13064.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Haijiao Zhang
    • 1
  • Panpan Xu
    • 1
  • Guidong Du
    • 1
  • Zhiwen Chen
    • 1
  • Kokyo Oh
    • 2
  • Dengyu Pan
    • 1
  • Zheng Jiao
    • 1
  1. 1.Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
  2. 2.Center for Environmental Science in SaitamaSaitamaJapan

Personalised recommendations