Nano Research

, Volume 4, Issue 3, pp 241–248 | Cite as

Selective gold deposition on a nanostructured block copolymer film crystallized by epitaxy

  • Claudio De Rosa
  • Finizia Auriemma
  • Rocco Di Girolamo
  • Rossella Aprea
  • Annette Thierry
Research Article


An ordered nanostructure formed by epitaxial crystallization of a semicrystalline block copolymer on a substrate has been used as a patterned template for the selective deposition of thermally evaporated gold nanoparticles, resulting in the formation of structure-guiding host nanocomposites in which the ordered distribution of the guest particles is guided by the ordering of the host nanostructured block copolymer matrix. This opens new perspectives in the field of polymeric composites related to the maximum enhancement of effective physical properties and to the numerous possible applications that arise due to the presence of long-range order in the spatial distribution of functional nanoparticles.


Crystalline block copolymers nanostructures nanocomposites gold deposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2010_75_MOESM1_ESM.pdf (1.2 mb)
Supplementary material, approximately 1.22 MB.


  1. [1]
    Giannelis, E. P. Polymer layered silicate nanocomposites. Adv. Mater. 1996, 8, 29–35.CrossRefGoogle Scholar
  2. [2]
    Giannelis, E. P. Polymer-layered silicate nanocomposites: Synthesis, properties and applications. Appl. Organomet. Chem. 1998, 12, 675–680.CrossRefGoogle Scholar
  3. [3]
    Okada, A.; Usuki, A. The chemistry of polymer-clay hybrids. Mater. Sci. Eng. 1995, C3, 109–115.Google Scholar
  4. [4]
    Caseri, W. Nanocomposites of polymers and metals or semiconductors: Historical background and optical properties. Macromol. Rapid Commun. 2000, 21, 705–722.CrossRefGoogle Scholar
  5. [5]
    Alexandre, M.; Dubois, P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. 2000, 28, 1–63.CrossRefGoogle Scholar
  6. [6]
    Vaia, R. A.; Giannelis, E. P. Polymer nanocomposites: Status and opportunities. MRS Bull. 2001, 26, 394–401.CrossRefGoogle Scholar
  7. [7]
    Tjong, S. C. Structural and mechanical properties of polymer nanocomposites. Mater. Sci. Eng. R. 2006, 53, 73–197.CrossRefGoogle Scholar
  8. [8]
    Bockstaller, M. R.; Mickiewicz, R. A.; Thomas, E. L. Block copolymer nanocomposites: Perspectives for tailored functional materials. Adv. Mater. 2005, 17, 1331–1349.CrossRefGoogle Scholar
  9. [9]
    Bates, F. S.; Fredrickson, G. H. Block copolymer thermodynamics: Theory and experiment. Annu. Rev. Phys. Chem. 1990, 41, 525–557.CrossRefGoogle Scholar
  10. [10]
    Bates, F. S. Polymer-polymer phase behavior. Science 1991, 251, 898–905.CrossRefGoogle Scholar
  11. [11]
    Fink, Y.; Urbas, A. M.; Bawendi, M. G.; Joannopoulos, J. D.; Thomas, E. L. Block copolymers as photonic bandgap materials. J. Lightwave Technol. 1999, 17, 1963–1969.CrossRefGoogle Scholar
  12. [12]
    Park, C.; Yoon, J.; Thomas, E. L. Enabling nanotechnology with self assembled block copolymer patterns. Polymer 2003, 44, 6725–6760.CrossRefGoogle Scholar
  13. [13]
    Coates, G. W.; Hustad, P. D.; Reinartz, S. Catalysts for the living insertion polymerization of alkenes: Access to new polyolefin architectures using Ziegler-Natta chemistry. Angew. Chem. Int. Ed. 2002, 41, 2236–2257.CrossRefGoogle Scholar
  14. [14]
    De Rosa, C.; Park, C.; Thomas, E. L.; Lotz, B. Microdomain patterns from directional eutectic solidification and epitaxy. Nature 2000, 405, 433–437.CrossRefGoogle Scholar
  15. [15]
    Zehner, R. W.; Lopes, W. A.; Morkved, T. L.; Jaeger, H.; Sita, L. R. Selective decoration of a phase-separated diblock copolymer with thiol-passivated gold nanocrystals. Langmuir 1998, 14, 241–244.CrossRefGoogle Scholar
  16. [16]
    Zehner, R. W.; Sita, L. R. Electroless deposition of nanoscale copper patterns via microphase-separated diblock copolymer templated self-assembly. Langmuir 1999, 15, 6139–6141.CrossRefGoogle Scholar
  17. [17]
    Lopes, W. A.; Jaeger, H. M. Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature 2001, 414, 735–738.CrossRefGoogle Scholar
  18. [18]
    Stocker, W.; Schumacher, M.; Graff, S.; Laug, J.; Wittmann, J. -C.; Lovinger, A. J.; Lotz, B. Direct observation of right and left helical hands of syndiotactic polypropylene by atomic force microscopy. Macromolecules 1994, 27, 6948–6955.CrossRefGoogle Scholar
  19. [19]
    Wittmann J. C.; Lotz, B. Epitaxial crystallization of polyethylene on organic substrates: A reappraisal of the mode of action of selected nucleating agent. J. Polym. Sci. Polym. Phys. Ed. 1981, 19, 1837–1851CrossRefGoogle Scholar
  20. [20]
    Wittmann, J. C.; Lotz, B. Epitaxial crystallization of polymers on organic and polymeric substrates. Prog. Polym. Sci. 1990, 15, 909–948.CrossRefGoogle Scholar
  21. [21]
    Wittmann, J. C.; Lotz, B. Polymer decoration: The orientation of polymer folds as revealed by the crystallization of polymer vapors. J. Polym. Sci., Polym. Phys. Ed. 1985, 23, 205–226.CrossRefGoogle Scholar
  22. [22]
    Basset, G. A. A new technique for decoration of cleavage and slip steps on ionic crystal surfaces. Philos. Mag. 1958, 3, 1042–1045.CrossRefGoogle Scholar
  23. [23]
    Helfand, E.; Wasserman, Z. R. Block copolymer theory. 4. Narrow interphase approximation. Macromolecules 1976, 9, 879–888.CrossRefGoogle Scholar
  24. [24]
    Di Marzio, E. A.; Guttman, C. M.; Hoffman, J. D. Calculation of lamellar thickness in a diblock copolymer, Oone of whose components is crystalline. Macromolecules 1980, 13, 1194–1198.CrossRefGoogle Scholar
  25. [25]
    Lee, L. -B.W.; Register, A. R. Equilibrium control of crystal thickness and melting point through block copolymerization. Macromolecules 2004, 37, 7278–7284.CrossRefGoogle Scholar
  26. [26]
    Wang, Y.; Becker, M.; Wang, L.; Liu, J.; Scholz, R.; Peng, J.; Gosele, U.; Christiansen, S.; Kim, D. H.; Steinhart, M. Nanostructured gold films for SERS by block copolymertemplated galvanic displacement reactions. Nano Lett. 2009, 9, 2384–2389.CrossRefGoogle Scholar
  27. [27]
    Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 2002, 116, 6755–6759.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Claudio De Rosa
    • 1
  • Finizia Auriemma
    • 1
  • Rocco Di Girolamo
    • 1
  • Rossella Aprea
    • 1
  • Annette Thierry
    • 2
  1. 1.Dipartimento di Chimica “P. Corradini”Università di Napoli “Federico II”NapoliItaly
  2. 2.Institut Charles SadronUniversité de Strasbourg, CNRS-UPR 22StrasbourgFrance

Personalised recommendations