Nano Research

, Volume 3, Issue 11, pp 800–806 | Cite as

Van Hove singularities as a result of quantum confinement: The origin of intriguing physical properties in Pb thin films

  • Yu Jie Sun
  • S. Souma
  • Wen Juan Li
  • T. Sato
  • Xie Gang Zhu
  • Guang Wang
  • Xi Chen
  • Xu Cun Ma
  • Qi Kun Xue
  • Jin Feng Jia
  • T. Takahashi
  • T. Sakurai
Open Access
Research Article

Abstract

In situ angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling spectroscopy (STS) have been used to study the electronic structure of Pb thin films grown on a Si(111) substrates. The experiments reveal that the electronic structure near the Fermi energy is dominated by a set of m-shaped subbands because of strong quantum confinement in the films, and the tops of the m-shaped subbands form an intriguing ring-like Van Hove singularity. Combined with theoretical calculations, we show that it is the Van Hove singularity that leads to an extremely high density of states near the Fermi energy and the recently reported strong oscillations (with a period of two monolayers) in various properties of Pb films.

Keywords

Van Hove singularity angle-resolved photoemission spectroscopy (ARPES) scanning tunneling spectroscopy (STS) Pb film 

References

  1. [1]
    Milun, M.; Pervan, P.; Woodruff, D. P. Quantum well structures in thin metal films: Simple model physics in reality? Rep. Prog. Phys. 2002, 65, 99–141.CrossRefADSGoogle Scholar
  2. [2]
    Jalochowski, M.; Bauer, E. Resistance oscillations and crossover in ultrathin gold films. Phys. Rev. B 1988, 37, 8622–8626.CrossRefADSGoogle Scholar
  3. [3]
    Luh, D. A.; Miller, T.; Paggel, J. J.; Chou, M. Y.; Chiang, T. C. Quantum electronic stability of atomically uniform films. Science 2001, 292, 1131–1133.CrossRefADSPubMedGoogle Scholar
  4. [4]
    Paggel, J. J.; Wei, C. M.; Chou, M. Y.; Luh, D. A.; Miller, T.; Chiang, T. C. Atomic-layer-resolved quantum oscillations in the work function: Theory and experiment for Ag/Fe(100). Phys. Rev. B 2002, 66, 233403.CrossRefADSGoogle Scholar
  5. [5]
    Guo, Y.; Zhang, Y. F.; Bao, X. Y.; Han, T. Z.; Tang, Z.; Zhang, L. X.; Zhu, W. G., Wang, E. G.; Niu, Q.; Qiu, Z. Q.; Jia, J. F.; Zhao, Z. X.; Xue, Q. K. Superconductivity modulated by quantum size effects. Science 2004, 306, 1915–1917.CrossRefADSPubMedGoogle Scholar
  6. [6]
    Özer, M. M.; Thompson, J. R.; Weitering, H. H. Hard superconductivity of a soft metal in the quantum regime. Nat. Phys. 2006, 2, 173–176.CrossRefGoogle Scholar
  7. [7]
    Eom, D.; Qin, S.; Chou, M. -Y.; Shih, C. K. Persistent superconductivity in ultrathin Pb films: A scanning tunneling spectroscopy study. Phys. Rev. Lett. 2006, 96, 027005.CrossRefADSPubMedGoogle Scholar
  8. [8]
    Nishio, T.; Ono, M.; Eguchi, T.; Sakata, H.; Hasegawa, Y. Superconductivity of nanometer-size Pb islands studied by low-temperature scanning tunneling microscopy. Appl. Phys. Lett. 2006, 88, 113115.CrossRefADSGoogle Scholar
  9. [9]
    Nishio, T.; An, T.; Miyachi, K.; Eguchi, T.; Sakata, H.; Lin, S. Z.; Hayashi, N.; Nakai, N.; Machida, M.; Hasegawa, Y. Superconducting Pb island nanostructures studied by scanning tunneling microscopy and spectroscopy. Phys. Rev. Lett. 2008, 101, 167001.CrossRefADSPubMedGoogle Scholar
  10. [10]
    Qin, S. Y.; Kim, J.; Niu, Q.; Shih, C. -K. Superconductivity at the two-dimensional limit. Science 2009, 324, 1314–1317.CrossRefADSPubMedGoogle Scholar
  11. [11]
    Upton, M. H.; Wei, C. M.; Chou, M. Y.; Miller, T.; Chiang, T. -C. Thermal stability and electronic structure of atomically uniform Pb films on Si(111). Phys. Rev. Lett. 2004, 93, 026802.CrossRefADSPubMedGoogle Scholar
  12. [12]
    Zhang, Y. -F.; Tang, Z.; Han, T. -Z.; Ma, X. -C.; Jia, J. -F.; Xue, Q. -K.; Xun, K.; Wu, S. -C. Oscillatory thermal expansion of Pb thin films modulated by quantum size effects. Appl. Phys. Lett. 2007, 90, 093120.CrossRefADSGoogle Scholar
  13. [13]
    Zhang, Y. -F.; Jia, J. -F.; Han, T. -Z.; Tang, Z.; Shen, Q. -T.; Guo, Y.; Qiu, Z. Q.; Xue, Q. -K. Band structure and oscillatory electron-phonon coupling of Pb thin films determined by atomic-layer-resolved quantum-well states. Phys. Rev. Lett. 2005, 95, 096802.CrossRefADSPubMedGoogle Scholar
  14. [14]
    Qi, Y.; Ma, X. C.; Jiang, P.; Ji, S. H.; Fu, Y. S.; Jia, J. -F.; Xue, Q. -K.; Zhang S. B. Atomic-layer-resolved local work functions of Pb thin films and their dependence on quantum well states. Appl. Phys. Lett. 2007, 90, 013109.CrossRefADSGoogle Scholar
  15. [15]
    Ma, X. C.; Jiang, P.; Qi, Y.; Jia, J. F.; Yang, Y.; Duan, W. H.; Li, W. -X.; Bao, X. H.; Zhang, S. B.; Xue, Q. -K. Experimental observation of quantum oscillation of surface chemical reactivities. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 9204–9208.CrossRefADSPubMedGoogle Scholar
  16. [16]
    Fu, Y. -S.; Ji, S. -H.; Chen, X.; Ma, X. -C.; Wu, R.; Wang, C. -C.; Duan, W. -H.; Qiu, X. -H.; Sun, B.; Zhang, P.; Jia, J. -F.; Xue, Q. -K. Manipulating the Kondo resonance through quantum size effects. Phys. Rev. Lett. 2007, 99, 256601.CrossRefADSPubMedGoogle Scholar
  17. [17]
    Jia, J. -F.; Li, S. -C.; Zhang Y. -F.; Xue, Q. -K. Quantum size effects induced novel properties in two-dimensional electronic systems: Pb thin films on Si(111). J. Phys. Soc. Jpn. 2007, 76, 082001.CrossRefADSGoogle Scholar
  18. [18]
    Wei, C. M.; Chou, M. Y. Theory of quantum size effects in thin Pb(111) films. Phys. Rev. B 2002, 66, 233408.CrossRefADSGoogle Scholar
  19. [19]
    Shanenko, A. A.; Croitoru, M. D.; Peeters, F. M. Oscillations of the superconducting temperature induced by quantum well states in thin metallic films: Numerical solution of the Bogoliubov-de Gennes equations. Phys. Rev. B 2007, 75, 014519.CrossRefADSGoogle Scholar
  20. [20]
    Zhang, Y. -F.; Jia, J. -F.; Tang, Z.; Han, T. -Z.; Ma, X. -C.; Xue, Q. -K. Growth, stability and morphology evolution of Pb films on Si(111) prepared at low temperature. Surf. Sci. 2005, 596, L331–L338.CrossRefADSGoogle Scholar
  21. [21]
    Tang, S. -J.; Basile, L.; Miller, T.; Chiang, T. -C. Breakup of quasiparticles in thin-film quantum wells. Phys. Rev. Lett. 2004, 93, 216804.CrossRefADSPubMedGoogle Scholar
  22. [22]
    Wu, J.; Choi, J.; Krupin, O.; Rotenberg, E.; Wu, Y. Z.; Qiu, Z. Q. Retrieving the energy band of Cu thin films using quantum well states. J. Phys.: Condens. Matter 2008, 20, 035213.CrossRefADSGoogle Scholar
  23. [23]
    Upton, M. H.; Miller, T.; Chiang, T. -C. Unusual band dispersion in Pb films on Si(111). Phys. Rev. B 2005, 71, 033403.CrossRefADSGoogle Scholar
  24. [24]
    Dil, J. H.; Kim, J. W.; Kampen, Th.; Horn, K.; Ettema, A. R. H. F. Electron localization in metallic quantum wells: Pb versus In on Si(111). Phys. Rev. B 2006, 73, 161308.CrossRefADSGoogle Scholar
  25. [25]
    Miyata, N.; Horikoshi, K.; Hirahara, T.; Hasegawa, S.; Wei, C. M.; Matsuda, I. Electronic transport properties of quantum-well states in ultrathin Pb (111) films. Phys. Rev. B 2008, 78, 245405.CrossRefADSGoogle Scholar
  26. [26]
    Anderson, J. R.; Gold, A. V. Fermi surface, pseudopotential coefficients, and spin-orbit coupling in lead. Phys. Rev. 1965, 139, A1459–A1481.CrossRefADSGoogle Scholar
  27. [27]
    Van Hove, L. The occurrence of singularities in the elastic frequency distribution of a crystal. Phys. Rev. 1953, 85, 1189–1193.CrossRefGoogle Scholar
  28. [28]
    Yu, P. Y.; Cardona, M. Fundamentals of Semiconductors: Physics and Material Properties; Springer Press: New York, 2003.Google Scholar
  29. [29]
    Kim, P.; Odom, T. W.; Huang, J. -L.; Lieber, C. M. Electronic density of states of atomically resolved single-walled carbon nanotubes: Van Hove singularities and end states. Phys. Rev. Lett. 1999, 82, 1225–1228.CrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yu Jie Sun
    • 1
    • 2
  • S. Souma
    • 2
  • Wen Juan Li
    • 3
  • T. Sato
    • 4
  • Xie Gang Zhu
    • 1
  • Guang Wang
    • 1
  • Xi Chen
    • 1
  • Xu Cun Ma
    • 3
  • Qi Kun Xue
    • 1
    • 2
    • 3
  • Jin Feng Jia
    • 1
  • T. Takahashi
    • 2
    • 4
  • T. Sakurai
    • 2
  1. 1.Key Laboratory of Atomic and Nanosciences, Department of PhysicsTsinghua UniversityBeijingChina
  2. 2.WPI Advanced Institute for Materials ResearchTohoku UniversitySendaiJapan
  3. 3.Institute of PhysicsThe Chinese Academy of SciencesBeijingChina
  4. 4.Department of PhysicsTohoku UniversitySendaiJapan

Personalised recommendations