Nano Research

, Volume 3, Issue 10, pp 714–721 | Cite as

Towards flexible all-carbon electronics: Flexible organic field-effect transistors and inverter circuits using solution-processed all-graphene source/drain/gate electrodes

  • Yongsheng Chen
  • Yanfei Xu
  • Kai Zhao
  • Xiangjian Wan
  • Jiachun Deng
  • Weibo Yan
Open Access
Research Article


Flexible organic field-effect transistors (OFETs) using solution-processable functionalized graphene for all the electrodes (source, drain, and gate) have been fabricated for the first time. These OFETs show performance comparable to corresponding devices using Au electrodes as the source/drain electrodes on SiO2/Si substrates with Si as the gate electrode. Also, these devices demonstrate excellent flexibility without performance degradation over severe bending cycles. Furthermore, inverter circuits have been designed and fabricated using these all-graphene-electrode OFETs. Our results demonstrate that the long-sought dream for all-carbon and flexible electronics is now much closer to reality.


Solution processing flexibility all-graphene-electrode OFETs inverter circuits 

Supplementary material

12274_2010_35_MOESM1_ESM.pdf (657 kb)
Supplementary material, approximately 657 KB.


  1. [1]
    Braga, D.; Horowitz, G. High-performance organic field-effect transistors. Adv. Mater. 2009, 21, 1473–1486.CrossRefGoogle Scholar
  2. [2]
    Burghard, M.; Klauk, H.; Kern, K. Carbon-based field-effect transistors for nanoelectronics. Adv. Mater. 2009, 21, 2586–2600.CrossRefGoogle Scholar
  3. [3]
    Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.CrossRefADSPubMedGoogle Scholar
  4. [4]
    Sekitani, T.; Yokota, T.; Zschieschang, U.; Klauk, H.; Bauer, S.; Takeuchi, K.; Takamiya, M.; Sakurai, T.; Someya, T. Organic nonvolatile memory transistors for flexible sensor arrays. Science 2009, 326, 1516–1519.CrossRefADSPubMedGoogle Scholar
  5. [5]
    Kushmerick, J. Molecular transistors scrutinized. Nature 2009, 462, 994–995.CrossRefADSPubMedGoogle Scholar
  6. [6]
    Sun, Y. M.; Liu, Y. Q.; Zhu, D. B. Advances in organic field-effect transistors. J. Mater. Chem. 2005, 15, 53–65.CrossRefGoogle Scholar
  7. [7]
    Muccini, M. A bright future for organic field-effect transistors. Nat. Mater. 2006, 5, 605–613.CrossRefADSPubMedGoogle Scholar
  8. [8]
    Allard, S.; Forster, M.; Souharce, B.; Thiem, H.; Scherf, U. Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew. Chem., Int. Ed. 2008, 47, 4070–4098.CrossRefGoogle Scholar
  9. [9]
    Baca, A. J.; Ahn, J. H.; Sun, Y. G.; Meitl, M. A.; Menard, E.; Kim, H. S.; Choi, W. M.; Kim, D. H.; Huang, Y.; Rogers, J. A. Semiconductor wires and ribbons for high-performance flexible electronics. Angew. Chem. Int. Ed. 2008, 47, 5524–5542.CrossRefGoogle Scholar
  10. [10]
    Liu, P.; Wu, Y. L.; Li, Y. N.; Ong, B. S.; Zhu, S. P. Enabling gate dielectric design for all solution-processed, high-performance, flexible organic thin-film transistors. J. Am. Chem. Soc. 2006, 128, 4554–4555.CrossRefPubMedGoogle Scholar
  11. [11]
    Ortiz, R. P.; Facchetti, A.; Marks, T. J. High-? organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem. Rev. 2010, 110, 205–239.CrossRefGoogle Scholar
  12. [12]
    Facchetti, A.; Yoon, M. H.; Marks, T. J. Gate dielectrics for organic field-effect transistors: New opportunities for organic electronics. Adv. Mater. 2005, 17, 1705–1725.CrossRefGoogle Scholar
  13. [13]
    Di, C. A.; Wei, D. C.; Yu, G.; Liu, Y. Q.; Guo, Y. L.; Zhu, D. B. Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv. Mater. 2008, 20, 3289–3293.CrossRefGoogle Scholar
  14. [14]
    Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.CrossRefADSPubMedGoogle Scholar
  15. [15]
    Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.CrossRefADSGoogle Scholar
  16. [16]
    Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.CrossRefPubMedGoogle Scholar
  17. [17]
    Liu, Z. F.; Liu, Q.; Huang, Y.; Ma, Y. F.; Yin, S. G.; Zhang, X. Y.; Sun, W.; Chen, Y. S. Organic photovoltaic devices based on a novel acceptor material: Graphene. Adv. Mater. 2008, 20, 3924–3930.CrossRefGoogle Scholar
  18. [18]
    Eda, G.; Chhowalla, M. Graphene-based composite thin films for electronics. Nano Lett. 2009, 9, 814–818.CrossRefADSPubMedGoogle Scholar
  19. [19]
    Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E., et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.CrossRefADSPubMedGoogle Scholar
  20. [20]
    Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.CrossRefADSPubMedGoogle Scholar
  21. [21]
    Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460.CrossRefADSPubMedGoogle Scholar
  22. [22]
    Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2, 463–470.CrossRefPubMedGoogle Scholar
  23. [23]
    Yu, Y. J.; Zhao, Y.; Ryu, S.; Brus, L. E.; Kim, K. S.; Kim, P. Tuning the graphene work function by electric field effect. Nano Lett. 2009, 9, 3430–3434.CrossRefADSPubMedGoogle Scholar
  24. [24]
    Li, X. S.; Zhu, Y. W.; Cai, W. W.; Borysiak, M.; Han, B. Y.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359–4363.CrossRefADSPubMedGoogle Scholar
  25. [25]
    Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.CrossRefADSPubMedGoogle Scholar
  26. [26]
    Wang, Y.; Chen, X. H.; Zhong, Y. L.; Zhu, F. R.; Loh, K. P. Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl. Phys. Lett. 2009, 95, 063302.CrossRefADSGoogle Scholar
  27. [27]
    Katsnelson, M. I. Graphene: Carbon in two dimensions. Mater. Today 2007, 10, 20–27.CrossRefGoogle Scholar
  28. [28]
    Wu, J. B.; Agrawal, M.; Becerril, H. A.; Bao, Z. N.; Liu, Z. F.; Chen, Y. S.; Peumans, P. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 2010, 4, 43–48.CrossRefPubMedGoogle Scholar
  29. [29]
    Wang, S. A.; Ang, P. K.; Wang, Z. Q.; Tang, A. L. L.; Thong, J. T. L.; Loh, K. P. High mobility, printable, and solution-processed graphene electronics. Nano Lett. 2010, 10, 92–98.CrossRefADSPubMedGoogle Scholar
  30. [30]
    Pang, S. P.; Tsao, H. N.; Feng, X. L.; Mullen, K. Patterned graphene electrodes from solution-processed graphite oxide films for organic field-effect transistors. Adv. Mater. 2009, 21, 3488–3491.CrossRefGoogle Scholar
  31. [31]
    Cao, Y.; Steigerwald, M. L.; Nuckolls, C.; Guo, X. F. Current trends in shrinking the channel length of organic transistors down to the nanoscale. Adv. Mater. 2010, 22, 20–32.CrossRefPubMedGoogle Scholar
  32. [32]
    Lee, C. G.; Park, S.; Ruoff, R. S.; Dodabalapur, A. Integration of reduced graphene oxide into organic field-effect transistors as conducting electrodes and as a metal modification layer. Appl. Phys. Lett. 2009, 95 023304.CrossRefGoogle Scholar
  33. [33]
    Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.CrossRefADSPubMedGoogle Scholar
  34. [34]
    Jin, M.; Jeong, H. K.; Yu, W. J.; Bae, D. J.; Kang, B. R.; Lee, Y. H. Graphene oxide thin film field effect transistors without reduction. J. Phys. D: Appl. Phys. 2009, 42, 135109.CrossRefADSGoogle Scholar
  35. [35]
    Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N., et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.CrossRefADSPubMedGoogle Scholar
  36. [36]
    Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.CrossRefADSPubMedGoogle Scholar
  37. [37]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefADSPubMedGoogle Scholar
  38. [38]
    Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.CrossRefGoogle Scholar
  39. [39]
    Xu, Y. F.; Liu, Z. B.; Zhang, X. L.; Wang, Y.; Tian, J. G.; Huang, Y.; Ma, Y. F.; Zhang, X. Y.; Chen, Y. S. A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. Adv. Mater. 2009, 21, 1275–1279.CrossRefGoogle Scholar
  40. [40]
    Qian, Z. K.; Hou, S. M.; Ning, J.; Li, R.; Shen, Z. Y.; Zhao, X. Y.; Xue, Z. Q. First-principles calculation on the conductance of a single 1,4-diisocyanatobenzene molecule with single-walled carbon nanotubes as the electrodes. J. Chem. Phys. 2007, 126, 084705.CrossRefADSPubMedGoogle Scholar
  41. [41]
    Cao, Y.; Liu, S.; Shen, Q.; Yan, K.; Li, P. J.; Xu, J.; Yu, D. P.; Steigerwald, M. L.; Nuckolls, C.; Liu, Z. F., et al. High-performance photoresponsive organic nanotransistors with single-layer graphenes as two-dimensional electrodes. Adv. Funct. Mater. 2009, 19, 2743–2748.CrossRefGoogle Scholar
  42. [42]
    Cao, Q.; Rogers, J. A. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv. Mater. 2009, 21, 29–53.CrossRefGoogle Scholar
  43. [43]
    Fukuda, K.; Sekitani, T.; Someya, T. Effects of annealing on electronic and structural characteristics of pentacene thin-film transistors on polyimide gate dielectrics. Appl. Phys. Lett. 2009, 95, 023302.CrossRefGoogle Scholar
  44. [44]
    Kato, Y.; Iba, S.; Teramoto, R.; Sekitani, T.; Someya, T.; Kawaguchi, H.; Sakurai, T. High mobility of pentacene field-effect transistors with polyimide gate dielectric layers. Appl. Phys. Lett. 2004, 84, 3789–3791.CrossRefADSGoogle Scholar
  45. [45]
    Graz, I. M.; Lacour, S. P. Flexible pentacene organic thin film transistor circuits fabricated directly onto elastic silicone membranes. Appl. Phys. Lett. 2009, 95, 243305.CrossRefADSGoogle Scholar
  46. [46]
    Ramprasad, R.; von Allmen, P.; Fonseca, L. R. C. Contributions to the work function: A density-functional study of adsorbates at graphene ribbon edges. Phys. Rev. B 1999, 60, 6023–6027.CrossRefADSGoogle Scholar
  47. [47]
    Veres, J.; Ogier, S.; Lloyd, G.; de Leeuw, D. Gate insulators in organic field-effect transistors. Chem. Mater. 2004, 16, 4543–4555.CrossRefGoogle Scholar
  48. [48]
    Di, C. A.; Liu, Y. Q.; Yu, G.; Zhu, D. B. Interface engineering: An effective approach toward high-performance organic field-effect transistors. Acc. Chem. Res. 2009, 42, 1573–1583.CrossRefPubMedGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yongsheng Chen
    • 1
  • Yanfei Xu
    • 1
  • Kai Zhao
    • 2
  • Xiangjian Wan
    • 1
  • Jiachun Deng
    • 2
  • Weibo Yan
    • 1
  1. 1.Key Laboratory of Functional Polymer Materials and Center for Nanoscale Science & Technology, Institute of Polymer Chemistry, College of ChemistryNankai UniversityTianjinChina
  2. 2.Key Laboratory of Display Materials and Photoelectric Devices, Institute of Material PhysicsTianjin University of TechnologyTianjinChina

Personalised recommendations