Nano Research

, Volume 3, Issue 6, pp 444–451 | Cite as

Theoretical and experimental studies of Schottky diodes that use aligned arrays of single-walled carbon nanotubes

Open Access
Research Article


We present theoretical and experimental studies of Schottky diodes that use aligned arrays of single-walled carbon nanotubes. A simple physical model, taking into account the basic physics of current rectification, can adequately describe the single-tube and array devices. We show that for as-grown array diodes, the rectification ratio, defined by the maximum-to-minimum-current-ratio, is low due to the presence of metallic-single-walled nanotube (SWNT) shunts. These tubes can be eliminated in a single voltage sweep resulting in a high rectification array device. Further analysis also shows that the channel resistance, and not the intrinsic nanotube diode properties, limits the rectification in devices with channel length up to 10 μm.


Schottky diodes aligned arrays single-walled carbon nanotubes 

Supplementary material

12274_2010_4_MOESM1_ESM.pdf (630 kb)
Supplementary material, approximately 340 KB.


  1. [1]
    Schottky, W. Vereinfachte und erweiterte Theorie der Randschicht-gleichrichter. Z. Phys. 1942, 118, 539–592.MATHCrossRefADSGoogle Scholar
  2. [2]
    Shockley, W. The theory of p-n junctions in semiconductors in p-n junction transistors. Bell Syst. Tech. J. 1949, 28, 435–489.Google Scholar
  3. [3]
    Huang, Y. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66–69.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Low, T.; Hong, S.; Appenzeller, J.; Datta, S.; Lundstrom, M. Conductance asymmetry of graphene p-n junction. IEEE Trans. Electron. Dev. 2009, 56, 1292–1299.CrossRefADSGoogle Scholar
  5. [5]
    Abdula, D.; Shim, M. Performance and photovoltaic response of polymer-doped carbon nanotube p-n junction. ACS Nano 2008, 2, 2154–2159.CrossRefPubMedGoogle Scholar
  6. [6]
    Lee, J. U.; Gipp, P. P.; Heller, C. M. Carbon nanotube p-n junction diodes. Appl. Phys. Lett. 2004, 85, 145–147.CrossRefADSGoogle Scholar
  7. [7]
    Zhou, C. W.; Kong, J.; Yenilmez, E.; Dai, H. J. Modulated chemical doping of individual carbon nanotubes. Science 2000, 290, 1552–1555.CrossRefPubMedADSGoogle Scholar
  8. [8]
    Bosnick, K.; Gabor, N.; McEuen, P. Transport in carbon nanotube p-i-n diodes. Appl. Phys. Lett. 2006, 89, 163121.CrossRefADSGoogle Scholar
  9. [9]
    Nosho, Y.; Ohno, Y.; Kishimoto, S.; Mizutani, T. Relation between conduction property and work function of contact metal in carbon nanotube field-effect transistors. Nanotechnology 2006, 17, 3412–3415.CrossRefPubMedADSGoogle Scholar
  10. [10]
    Cobas, E.; Fuhrer, M. S. Microwave rectification by a carbon nanotube Schottky diode. Appl. Phys. Lett. 2008, 93, 043120.CrossRefADSGoogle Scholar
  11. [11]
    Manohara, H. M.; Wong, E. R.; Schlecht, E.; Hunt, B. D.; Siegel, P. H. Carbon nanotube Schottky diodes using Ti-Schottky and Pt-Ohmic contacts for high frequency applications. Nano Lett. 2005, 5, 1469–1474.CrossRefPubMedADSGoogle Scholar
  12. [12]
    Wang, S.; Zhang, L.; Zhang, Z. Y.; Ding, L.; Zeng, Q. S.; Wang, Z. X.; Liang, X. L.; Gao, M.; Shen, J.; Xu, H. L.; Chen, Q.; Cui, R. L.; Li, Y.; Peng, L. M. Photovoltaic effects in asymetrically contacted CNT barrier free bipolar diode. J. Phys. Chem. C 2009, 113, 6891–6893.CrossRefGoogle Scholar
  13. [13]
    Wang, S.; Zhang, Z. Y.; Ding, L.; Liang, X. L.; Shen, J.; Xu, H. L.; Chen, Q.; Cui, R. L.; Li, Y.; Peng, L. M. A doping free carbon nanotube CMOS inverter-based bipolar diode and ambipolar transistor. Adv. Mater. 2008, 20, 3258–3262.CrossRefGoogle Scholar
  14. [14]
    Perello, D.; Bae, D. J.; Kim, M. J.; Cha, D.; Jeong, S. Y.; Kang, B. R.; Yu, W. J.; Lee, Y. H.; Yun, M. Quantitative experimental analysis of Schottky barriers and Poole-Frenkel emission in carbon nanotube devices. IEEE Trans. Nanotechnol. 2009, 8, 355–360.CrossRefADSGoogle Scholar
  15. [15]
    Kocabas, C.; Dunham, S.; Cao, Q.; Cimino, K.; Ho, X. N.; Kim, H. S.; Dawson, D.; Payne, J.; Stuenkel, M.; Zhang, H.; Banks, T.; Feng, M.; Rotkin, S. V.; Rogers, J. A. High frequency performance of submicrometer transistors that use aligned arrays of single-walled carbon nanotubes. Nano Lett. 2009, 9, 1937–1943.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Kocabas, C.; Kim, H. S.; Banks, T.; Rogers, J. A.; Pesetski, A. A.; Baumgardner, J. E.; Krishnaswamy, S. V.; Zhang, H. Radio frequency analog electronics based on carbon nanotube transistors. Proc. Natl. Acad. Sci. USA 2008, 105, 1405–1409.CrossRefPubMedADSGoogle Scholar
  17. [17]
    Pesetski, A. A.; Baumgardner, J. E.; Krishnaswamy, S. V.; Zhang, H.; Adam, J. D.; Kocabas, C.; Banks, T.; Rogers, J. A. A 500 MHz carbon nanotube transistor oscillator. Appl. Phys. Lett. 2008, 93, 123506.CrossRefADSGoogle Scholar
  18. [18]
    Amlani, L.; Lewis, J.; Lee, K.; Zhang, R.; Deng, J.; Wong, H. S. P. First demonstration of AC gain from a single walled carbon nanotube common-source amplifier, IEEE International Electron Devices Meeting, San Francisco, USA, 2006, 1–2, 559–562.Google Scholar
  19. [19]
    Sze, S. M. Semiconductor Devices, Physics and Technology (2nd Edition); John Wiley and Sons, Inc.: USA, 2002.Google Scholar
  20. [20]
    Kocabas, C.; Shim, M.; Rogers, J. A. Spatially selective guided growth of higher coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices. J. Am. Chem. Soc. 2006, 128, 4540–4541.CrossRefPubMedGoogle Scholar
  21. [21]
    Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High performance electronics using dense, perfectly aligned arrays of single walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236.CrossRefPubMedADSGoogle Scholar
  22. [22]
    Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.CrossRefPubMedADSGoogle Scholar
  23. [23]
    Javey, A.; Guo, J.; Farmer, D. B.; Wang, Q.; Wang, D. W.; Gordon, R. G.; Lundstrom, M.; Dai, H. J. Carbon nanotube field-effect transistors with integrated Ohmic contacts and high-κ gate dielectrics. Nano Lett. 2004, 4, 447–450.CrossRefADSGoogle Scholar
  24. [24]
    Kim, W.; Javey, A.; Tu, R.; Cao, J.; Wang, Q.; Dai, H. J. Electrical contacts to carbon nanotubes down to 1 nm in diameter. Appl. Phys. Lett. 2005, 87, 173101.CrossRefADSGoogle Scholar
  25. [25]
    Nosho, Y.; Ohno, Y.; Kishimoto, S.; Mizutani, T. n-Type carbon nanotube field-effect transistors fabricated by using Ca contact electrodes. Appl. Phys. Lett. 2005, 86, 073105.CrossRefADSGoogle Scholar
  26. [26]
    Lee, J. U. Photovoltaic effect in ideal carbon nanotube diodes. Appl. Phys. Lett. 2005, 87, 073101.CrossRefADSGoogle Scholar
  27. [27]
    Wolfram, S. Mathematica 7.0; Wolfram Research: Champaign, IL, USA, 2008.Google Scholar
  28. [28]
    Banwell, T. C.; Jayakumar, A. Exact analytical solution for current flow through diode with series resistance. Electron. Lett. 2000, 36, 291–292.CrossRefGoogle Scholar
  29. [29]
    Ho, X. N.; Ye, L.; Rotkin, S. V.; Cao, Q.; Unarunotai, S.; Salamat, S.; Alam, M. A.; Rogers, J. A. Scaling properties in transistors that use aligned arrays of single-walled carbon nanotubes. Nano Lett. 2010, 10, 499–503.CrossRefPubMedADSGoogle Scholar
  30. [30]
    Zhang, Z. Y.; Yao, K.; Liu, Y.; Jin, C. H.; Liang, X. L.; Chen, Q.; Peng, L. M. Quantitative analysis of current-voltage characteristics of semiconducting nanowires: Decoupling of contact effects. Adv. Funct. Mater. 2007, 17, 2478–2489.CrossRefGoogle Scholar
  31. [31]
    Bachtold, A.; Fuhrer, M. S.; Plyasunov, S.; Forero, M.; Anderson, E. H.; Zettl, A.; McEuen, P. L. Scanned probe microscopy of electronic transport in carbon nanotubes. Phys. Rev. Lett. 2000, 84, 6082–6085.CrossRefPubMedADSGoogle Scholar
  32. [32]
    Yaish, Y.; Park, J. Y.; Rosenblatt, S.; Sazonova, V.; Brink, M.; McEuen, P. L. Electrical nanoprobing of semiconducting carbon nanotubes using an atomic force microscope. Phys. Rev. Lett. 2004, 92, 046401.CrossRefPubMedADSGoogle Scholar
  33. [33]
    Zhou, X. J.; Park, J. Y.; Huang, S. M.; Liu, J.; McEuen, P. L. Band structure, phonon scattering and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 2005, 95, 146805.CrossRefPubMedADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Xinning Ho
    • 1
  • Lina Ye
    • 1
    • 2
  • Slava V. Rotkin
    • 3
    • 4
  • Xu Xie
    • 1
  • Frank Du
    • 1
  • Simon Dunham
    • 1
  • Jana Zaumseil
    • 5
  • John A. Rogers
    • 1
    • 6
    • 7
  1. 1.Department of Materials Science and Engineering, Beckman Institute, and Frederick Seitz Materials Research LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of ChemistryUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Department of PhysicsLehigh UniversityBethlehemUSA
  4. 4.Centre for Advanced Materials and NanotechnologyLehigh UniversityBethlehemUSA
  5. 5.Center for Nanoscale MaterialsArgonne National LaboratoryArgonneUSA
  6. 6.Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  7. 7.Department of Electrical and Computer Engineering, Mechanical Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations