Nano Research

, Volume 2, Issue 12, pp 945–954 | Cite as

Molecular dynamics study of dipalmitoylphosphatidylcholine lipid layer self-assembly onto a single-walled carbon nanotube

  • Hongming Wang
  • Servaas Michielssens
  • Samuel L. C. Moors
  • Arnout Ceulemans
Open Access
Research Article


Single-walled carbon nanotubes (SWNTs) are possible nano-injectors and delivery vehicles of molecular probes and drugs into cells. In order to explore the interaction between lipid membranes and carbon nanotubes, we investigate the binding mechanism of dipalmitoylphosphatidylcholine (DPPC) with SWNTs by molecular dynamics. In low concentration range simulations, the DPPC molecules form a supramolecular two-layered cylindrical structure wrapped around the carbon nanotube surface. The hydrophobic part of DPPC is adsorbed on the surface of the nanotube, and the hydrophilic top is oriented towards the aqueous phase. For higher concentration ranges, the DPPC molecules are found to form a supramolecular multi-layered structure wrapped around the carbon nanotube surface. At the saturation point a membrane-like structure is self-assembled with a width of 41.4 Å, which is slightly larger than the width of a cell membrane. Our study sheds light on the existing conflicting simulation data on adsorption of single-chained phospholipids.


Cell membrane molecular dynamics carbon nanotubes self-assembly nano-injector 


  1. [1]
    Star, A.; Gabriel, J. P.; Bradley, K.; Grüne, G. Electronic detection of specific protein binding using nanotube FET devices. Nano Lett. 2003, 3, 459–463.CrossRefADSGoogle Scholar
  2. [2]
    Besteman, K.; Lee, J. -O.; Wiertz, F. G. M.; Heering, H. A.; Dekker, C. Enzyme-coated carbon nanotubes as singlemolecule biosensors. Nano Lett. 2003, 3, 727–730.CrossRefADSGoogle Scholar
  3. [3]
    Chen, R. J.; Zhang, Y. G.; Wang, D. W.; Dai, H. J. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 2001, 123, 3838–3839.CrossRefPubMedGoogle Scholar
  4. [4]
    Kam, N. W. S.; Jessop, T. C.; Wender, P. A.; Dai, H. Nanotube molecular transporters internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc. 2004, 126, 6850–6851.CrossRefGoogle Scholar
  5. [5]
    Chen, X.; Kis, A.; Zettl, A.; Bertozzi, C. R. A cell nanoinjector based on carbon nanotubes. Proc. Natl. Acad. Sci. USA 2007, 104, 8218–8222.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Porter, A. E.; Gass, M.; Muller, K.; Skepper, J. N.; Midgley, P. A.; Welland, M. Direct imaging of single-walled carbon nanotubes in cells. Nat. Nanotechnol. 2007, 2, 713–717.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Vakarelski, I. U.; Brown, S. C.; Higashitani, K.; Moudgil, B. M. Penetration of living cell membranes with fortified carbon nanotube tips. Langmuir 2007, 23, 10893–10896.CrossRefPubMedGoogle Scholar
  8. [8]
    Bianco, A.; Hoebeke, J.; Godefroy, S.; Chaloin, O.; Pantarotto, D.; Briand, J.; Muller, S.; Prato, M.; Partidos, C. D. Cationic carbon nanotubes bind to CpG oligodeoxynucleotides and enhance their immunostimulatory properties. J. Am. Chem. Soc. 2005, 127, 58–59.CrossRefPubMedGoogle Scholar
  9. [9]
    Cherukuri, P.; Bachilo, S. M.; Litovsky, S. H.; Weisman, R. B. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 2004, 126, 15638–15639.CrossRefPubMedGoogle Scholar
  10. [10]
    Lu, Q.; Moore, J. M.; Huang, G.; Mount, A. S.; Rao, A. M.; Larcom, L. L.; Ke, P. C. RNA polymer translocation with single-walled carbon nanotubes. Nano Lett. 2004, 4, 2473–2477.CrossRefADSGoogle Scholar
  11. [11]
    Lopez, C. F.; Nielsen, S. O.; Moore, P. B.; Klein, M. L. Understanding nature’s design for a nanosyringe. Proc. Natl. Acad. Sci. USA 2007, 101, 4431–4434.CrossRefADSGoogle Scholar
  12. [12]
    Lopez, C. F.; Nielsen, S. O.; Ensing, B.; Moore, P. B.; Klein, M. L. Structure and dynamics of model pore insertion into a membrane. Biophys. J. 2005, 88, 3083–3094.CrossRefPubMedGoogle Scholar
  13. [13]
    Wallace, E. J.; Sansom, M. S. P. Blocking of carbon nanotube based nanoinjectors by lipids: A simulation study. Nano Lett. 2008, 8, 2751–2756.CrossRefPubMedADSGoogle Scholar
  14. [14]
    O’Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C.; Ma, J.; Hauge, R. H.; Weisman, R. B.; Smalley, R. E. Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002, 297, 593–596.CrossRefPubMedADSGoogle Scholar
  15. [15]
    Richard, C.; Balavoine, F.; Schultz, P.; Ebbesen, T. W.; Mioskowski, C. Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 2003, 300, 775–778.CrossRefPubMedADSGoogle Scholar
  16. [16]
    Zhou, X. J.; Moran-Mirabal, J. M.; Craighead, H. G.; McEuen, P. L. Supported lipid bilayer/carbon nanotube hybrids. Nat. Nanotechnol. 2007, 2, 185–190.CrossRefPubMedGoogle Scholar
  17. [17]
    Wu, Y.; Hudson, J. S.; Lu, Q.; Moore, J. M.; Mount, A. S.; Rao, A. M.; Alexov, E.; Ke, P. C. Coating single-walled carbon nanotubes with phospholipids. J. Phys. Chem. B. 2006, 110, 2475–2478.CrossRefPubMedGoogle Scholar
  18. [18]
    Qiao, R.; Ke, P. C. Lipid-carbon nanotube self-assembly in aqueous solution. J. Am. Chem. Soc. 2006, 128, 13656–13657.CrossRefPubMedGoogle Scholar
  19. [19]
    Wallace, E. J.; Sansom, M. S. P. Carbon nanotube/detergent interactions via coarse-grained molecular dynamics. Nano Lett. 2007, 7, 1923–1928.CrossRefPubMedADSGoogle Scholar
  20. [20]
    Smondyrev, A.; Berkowitz, M. L. Molecular dynamics study of Sn-1 and Sn-2 chain conformations in dipalmitoylphosphatidylcholine membranes. J. Chem. Phys. 1999, 110, 3981–3985.CrossRefADSGoogle Scholar
  21. [21]
    Berendsen, H. J. C. J. P.; Postma, M.; van Gunsteren, W. F.; Hermans, J. In: Proceedings of the Fourteenth Jerusalem Symposium on Quantum Chemistry and Biochemistry, Jerusalem, Israel, April 13 16, Pullman, B., Ed.; Kluwer: Reidel, Dordrecht, 1981; p. 331.Google Scholar
  22. [22]
    Essman, U.; Perela, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593.CrossRefADSGoogle Scholar
  23. [23]
    Rossetti, G.; Magistrato, A.; Pastore, A.; Persichetti, F.; Carloni, P. Structural properties of polyglutamine aggregates investigated via molecular dynamics simulations. J. Phys. Chem. B 2008, 112, 16843–16850.CrossRefPubMedGoogle Scholar
  24. [24]
    Shao, Q.; Huang, L.; Zhou, J.; Lu, L.; Zhang, L.; Lu, X.; Jiang, S.; Gubbins, K. E.; Zhu, Y.; Shen, W. Molecular dynamics study on diameter effect in structure of ethanol molecules confined in single-walled carbon nanotubes. J. Phys. Chem. C 2007, 111, 15677–15685.CrossRefGoogle Scholar
  25. [25]
    Berger, O.; Edholm, Olle.; Jahnig, F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylc holine at full hydration, constant pressure, and constant temperature. Biophys. J. 1997, 72, 2002–2013.CrossRefPubMedADSGoogle Scholar
  26. [26]
    Egbert, E.; Marrink, S. J.; Berends, H. J. C. Molecular dynamics simulation of a phospholipid membrane. Eur. Biophys. J. 1994, 22, 423–436.Google Scholar
  27. [27]
    Ryckaert, J. P.; Bellemans, A. Molecular dynamics of liquid n-butane near its boiling point. Chem. Phys. Lett. 1975, 30, 123–125.CrossRefADSGoogle Scholar
  28. [28]
    Oostenbrink, C.; Villa, A.; Mark, A. E.; van Gunsteren, W. F. V. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 2004, 25, 1656–1676.CrossRefPubMedGoogle Scholar
  29. [29]
    Berendsen, H. J. C.; Postma, J. P. M.; Di Nola, A.; Haak, J. R. L. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690.CrossRefADSGoogle Scholar
  30. [30]
    Hess, B. A. P-LINCS: A parallel linear constraint solver for molecular simulation. J. Chem. Theor. Comput. 2008, 4, 116–122.CrossRefGoogle Scholar
  31. [31]
    Berendsen, H. J. C.; van der Spoel, D.; van Drunen, R. GROMACS-A message-passing parallel molecular dynamics implementation. Comput. Phys. Comm. 1995, 91, 43–56,.CrossRefADSGoogle Scholar
  32. [32]
    Lindahl, E.; Hess, B.; van der Spoel, D. GROMACS 3.0: A package for molecular simulation and trajectory analysis, J. Mol. Model. 2001, 7, 306–317.Google Scholar
  33. [33]
    Kasson, P. M.; Pande, V. S. Molecular dynamics simulation of lipid reorientation at bilayer edges. Biophys. J. 2004, 86, 3744–3749.CrossRefPubMedADSGoogle Scholar
  34. [34]
    Krishnamurty, S.; Stefanov, M.; Mineva, T.; Begu, S.; Devoisselle, J. M.; Goursot, A.; Zhu, R.; Salahub, D. R. Density functional theory-based conformational analysis of a phospholipid molecule (dimyristoylphosphatidylcholine). J. Phys. Chem. B 2008, 112, 13433–13442.CrossRefPubMedGoogle Scholar
  35. [35]
    Wei, C. Radius and chirality dependent conformation of polymer molecule at nanotube interface. Nano Lett. 2006, 6, 1627–1631.CrossRefPubMedADSGoogle Scholar
  36. [36]
    De Vries, A. H.; Mark, A. E.; Marrink, S. J. Molecular dynamics simulation of the spontaneous formation of a small DPPC vesicle in water in atomistic detail. J. Am. Chem. Soc. 2004, 126, 4488–4489.CrossRefPubMedGoogle Scholar
  37. [37]
    De Vries, A. H.; Mark, A. E.; Marrink, S. J. Molecular dynamics simulation of the spontaneous formation of a small DPPC vesicle in water in atomistic detail. J. Am. Chem. Soc. 2004, 126, 4488–4489.CrossRefPubMedGoogle Scholar
  38. [38]
    Lu, J.; Xu, Y.; Chen, J.; Huang, F. Effect of lysophosphatidylcholine on behavior and structure of phosphatidylcholine liposomes. Sci. China Ser. C 1997, 40, 622–629.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Hongming Wang
    • 1
  • Servaas Michielssens
    • 1
  • Samuel L. C. Moors
    • 1
  • Arnout Ceulemans
    • 1
  1. 1.Laboratory of Quantum Chemistry, Department of Chemistry and INPAC Institute for Nanoscale Physics and ChemistryKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations