Nano Research

, 2:865 | Cite as

Minimizing purification-induced defects in single-walled carbon nanotubes gives films with improved conductivity

Open Access
Research Article


A method for the non-destructive purification of single-walled carbon nanotubes (SWNTs) using classical coordination chemistry to remove the metal catalyst has been developed. In preliminary tests, the conductivity of films based on the resulting SWNTs was markedly better than that of films prepared from SWNTs purified by treatment with oxidizing acid solutions. The transparent and conducting SWNT films have potential applications in optoelectronic devices.


Carbon nanotube film conductivity transparency coordination chemistry 


  1. [1]
    Rotkin, S. V.; Subramoney, S. Applied Physics of Carbon Nanotubes: Fundamentals of Theory, Optics and Transport Devices; Springer-Verlag: Berlin, 2005.CrossRefGoogle Scholar
  2. [2]
    Calvert, P. Nanotube composites: A recipe for strength. Nature 1999, 399, 210–211.CrossRefADSGoogle Scholar
  3. [3]
    Ajayan, P. M. Nanotubes from carbon. Chem. Rev. 1999, 99, 1787–1800.CrossRefPubMedGoogle Scholar
  4. [4]
    Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Logic circuits with carbon nanotube transistors. Science 2001, 294, 1317–1320.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, Ph. Carbon nanotube inter- and intramolecular logic gates. Nano Lett. 2001, 1, 453–456.CrossRefADSGoogle Scholar
  6. [6]
    Bonard, J. M.; Weiss, N.; Kind, H.; Stöckli, T.; Forro, L.; Kern, K.; Châtelain, A. Tuning the field emission properties of patterned carbon nanotube films. Adv. Mater. 2001, 13, 184–188.CrossRefGoogle Scholar
  7. [7]
    Tohji, K.; Takahashi, H.; Shinoda, Y.; Shimizu, N.; Jeyadevan, B.; Matsuoka, I.; Saito, Y.; Kasuya, A.; Ito, S.; Nishina, Y. Purification procedure for single-walled nanotubes. J. Phys. Chem. B 1997, 101, 1974–1978.CrossRefGoogle Scholar
  8. [8]
    Shi, Z.; Lian, Y.; Liao, F.; Zhou, X.; Gu, Z.; Zhang, Y.; Iijima, S. Purification of single-wall carbon nanotubes. Solid State Commun. 1999, 112, 35–37.CrossRefADSGoogle Scholar
  9. [9]
    Mizoguti, E.; Nihey, F.; Yudasaka, M.; Iijima, S.; Ichihashi, T.; Nakamura, K. Purification of single-wall carbon nanotubes by using ultrafine gold particles. Chem. Phys. Lett. 2000, 321, 297–301.CrossRefADSGoogle Scholar
  10. [10]
    Zimmerman, J. L.; Bradley, R. K.; Huffman, C. B.; Huffman, R. H.; Hauge, R. H.; Margrave, J. L. Gas-phase purification of single-wall carbon nanotubes. Chem. Mater. 2000, 12, 1361–1366.CrossRefGoogle Scholar
  11. [11]
    Dujardin, E.; Ebbesen, T. W.; Krishnan, A.; Treacy, M. M. J. Wetting of single shell carbon nanotubes. Adv. Mater. 1998, 10, 1472–1475.CrossRefGoogle Scholar
  12. [12]
    Rinzler, A. G.; Liu, J.; Dai, H.; Nikolaev, P.; Huffman, C. B.; Rodriguez-Macias, F. J.; Boul, P. J.; Lu, A. H.; Colbert, D. T.; Lee, R. S.; Fischer, J. E.; Rao, A. M.; Eklund, P. C.; Smalley, R. E. Large-scale purification of single-wall carbon nanotubes: Process, product, and characterization. Appl. Phys. A 1998, 67, 29–37.CrossRefADSGoogle Scholar
  13. [13]
    Dillon, A. C.; Gennett, T.; Jones, K. M.; Alleman, J. L.; Parilla, P. A.; Heben, M. J. A simple and complete purification of single-walled carbon nanotube materials. Adv. Mater. 1999, 11, 1354–1358.CrossRefGoogle Scholar
  14. [14]
    Bandow, S.; Rao, A. M.; Williams, K. A.; Thess, A.; Smalley, R. E.; Eklund, P. C. Purification of single-wall carbon nanotubes by microfiltration. J. Phys. Chem. B 1997, 101, 8839–8842.CrossRefGoogle Scholar
  15. [15]
    Shelmov, K. B.; Esenaliev, R. O.; Rinzler, A. G.; Huffman, C. B.; Smalley, R. E. Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem. Phys. Lett. 1998, 282, 429–434.CrossRefADSGoogle Scholar
  16. [16]
    Tohji, K.; Goto, T.; Takahashi, H.; Shinoda, Y.; Shimizu, N.; Jeyadevan, B.; Matsuoka, I.; Saito, Y.; Kasuya, A.; Ohsuna, T.; Hiraga, K.; Nishina, Y. Purifying single-walled nanotubes. Nature 1996, 383, 679–680.CrossRefADSGoogle Scholar
  17. [17]
    Park, Y. S.; Choi, Y. C.; Kim, K. S.; Chung, D. C.; Bae, D. J.; An, K. H.; Lim, S. C.; Zhu, X. Y.; Lee, Y. H. High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing. Carbon 2001, 39, 655–661.CrossRefGoogle Scholar
  18. [18]
    Moon, J. M.; An, K. H.; Lee, Y. H.; Park, Y. S.; Bae, D. J.; Park, G. S. High-yield purification process of singlewalled carbon nanotubes. J. Phys. Chem. B 2001, 105, 5677–5681.CrossRefGoogle Scholar
  19. [19]
    Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605.CrossRefADSGoogle Scholar
  20. [20]
    de Heer, W. A.; Poncharal, P.; Berger, C.; Gezo, J.; Song, Z. M.; Bettini, J.; Ugarte, D. Liquid carbon, carbon-glass beads, and the crystallization of carbon nanotubes. Science 2005, 307, 907–910.CrossRefPubMedADSGoogle Scholar
  21. [21]
    Itkis, M. E.; Perea, D.; Niyogi, S.; Rickard, S.; Hamon, M.; Hu, H.; Zhao, B.; Haddon, R. C. Purity evaluation of asprepared single-walled carbon nanotube soot by use of solution-phase near-IR spectroscopy. Nano Lett. 2003, 3, 309–314.CrossRefADSGoogle Scholar
  22. [22]
    Yao, M. G.; Liu, B. B.; Zou, Y. G.; Wang, L.; Cui, T.; Zou, G. T. Effect of rare-earth component of the RE/Ni catalyst on the formation and nanostructure of single-walled carbon nanotubes. J. Phys. Chem. B 2006, 110, 15284–15290.CrossRefPubMedGoogle Scholar
  23. [23]
    Wang, J.; Wang, Y.; Zhang, Z. H.; Zhang, X. D.; Tong, J.; Liu, X. Z.; Liu, X. Y.; Zhang, Y.; Pan, Z. J. Syntheses, characterization, and structure determination of ninecoordinate Na[YIII(edta)(H2O)3]·5H2O and eight-coordinate Na[YIII(cydta)(H2O)2]·5H2O complexes. J. Struct. Chem. 2005, 46, 895–905.CrossRefGoogle Scholar
  24. [24]
    Wu, Z. C.; Chen, Z. H.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F.; Rinzler, A. G. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273–1276.CrossRefPubMedADSGoogle Scholar
  25. [25]
    Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.CrossRefADSGoogle Scholar
  26. [26]
    Rao, A. M.; Chen, J.; Richter, E.; Schlecht, U.; Eklund, P. C.; Haddon, R. C.; Venkateswaran, U. D.; Kwon, Y. K.; Tománek. D. Effect of van der Waals interactions on the Raman modes in single walled carbon nanotubes. Phys. Rev. Lett. 2001, 86, 3895–3898.CrossRefPubMedADSGoogle Scholar
  27. [27]
    Furtado, C. A.; Kim, U. J.; Gutierrez, H. R.; Pan, L.; Dickey, E. C.; Eklund, P. C. Debundling and dissolution of single-walled carbon nanotubes in amide solvents. J. Am. Chem. Soc. 2004, 126, 6095–6105.CrossRefPubMedGoogle Scholar
  28. [28]
    Yu, Z.; Brus, L. Rayleigh and Raman scattering from individual carbon nanotube bundles. J. Phys. Chem. B 2001, 105, 1123–1134.CrossRefGoogle Scholar
  29. [29]
    Wang, J.; Wang, Y.; Zhang, X. D.; Zhang, Z. H.; Zhang, Y.; Liu, X. Z.; Wang, L.; Li, H. Coordinate structures and change laws of rare earth metal complexes with aminopolycarboxylic acids, I. NTA, EDTA and CYDTA series. Chinese J. Struct. Chem. 2004, 23, 1169–1176.Google Scholar
  30. [30]
    Kim, D. S.; Nepal, D.; Geckeler, K. E. Individualization of single-walled carbon nanotubes: Is the solvent important? Small 2005, 1, 1117–1124.CrossRefPubMedGoogle Scholar
  31. [31]
    Hiura, H.; Ebbesen, T. W.; Tanigaki, K. Opening and purification of carbon nanotubes in high yields. Adv. Mater. 1995, 7, 275–276.CrossRefGoogle Scholar
  32. [32]
    Kovtyukhova, N. I.; Mallouk, T. E.; Pan, L.; Dickey, E. C. Individual single-walled nanotubes and hydrogels made by oxidative exfoliation of carbon nanotube ropes. J. Am. Chem. Soc. 2003, 125, 9761–9769.CrossRefPubMedGoogle Scholar
  33. [33]
    Ago, H.; Kugler, T.; Cacialli, F.; Salaneck, W. R.; M. Shaffer, S. P.; Windle, A. H.; Friend, R. H. Work functions and surface functional groups of multiwall carbon nanotubes. J. Phys. Chem. B 1999, 103, 8116–8121.CrossRefGoogle Scholar
  34. [34]
    Moeller, T.; Martin, D. F.; Thompson, L. C.; Ferrús, R.; Feistel, G. R.; Randall, W. J. The coordination chemistry of yttrium and the rare earth metal ions. Chem. Rev. 1965, 65, 1–50.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.Materials LaboratoriesSony CorporationOkata, Atsugi City, KanagawaJapan

Personalised recommendations