Size-dependent joule heating of gold nanoparticles using capacitively coupled radiofrequency fields

Abstract

Capacitively coupled shortwave radiofrequency fields (13.56 MHz) resistively heat low concentrations (∼1 ppm) of gold nanoparticles with a thermal power dissipation of ∼380 kW/g of gold. Smaller diameter gold nanoparticles (< 50 nm) heat at nearly twice the rate of larger diameter gold nanoparticles (≥50 nm), which is attributed to the higher resistivity of smaller gold nanostructures. A Joule heating model has been developed to explain this phenomenon and provides critical insights into the rational design and engineering of nanoscale materials for noninvasive thermal therapy of cancer.

References

  1. [1]

    Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L. Nanoshell-mediated near infrared thermal therapy of tumors under magnetic resonance guidance. P. Natl. Aacd. Sci. USA 2003, 100, 13549–13554.

    Article  CAS  ADS  Google Scholar 

  2. [2]

    Gobin, A. M.; Lee, M. H.; Halas, N. J.; James, W. D.; Drezek, R. A.; West, J. L. Near infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 2007, 7, 1929–1934.

    Article  CAS  PubMed  ADS  Google Scholar 

  3. [3]

    Hergt, R.; Hiergeist, R.; Hilger, I.; Kaiser, W. A.; Lapatnikov, Y.; Margel, S.; Richter, U. Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J. Magn. Magn. Mater. 2004, 270, 345–357.

    Article  CAS  ADS  Google Scholar 

  4. [4]

    Arnfield, M. R.; Mathew, R. P.; Tulip, J.; McPhee, M. S. Analysis of tissue optical coefficients using an approximate equation valid for comparable absorption and scattering. Phys. Med. Biol. 1992, 37, 1219–1230.

    Article  CAS  PubMed  Google Scholar 

  5. [5]

    Kalambur, V. S.; Longmire, E. K.; Bischof, J. C. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles. Langmuir 2005, 23, 12329–12336.

    Article  Google Scholar 

  6. [6]

    Curley, S. A.; Cherukuri, P.; Briggs, K.; Patra, C. R.; Upton, M.; Dolson, E.; Mukherjee, P. Noninvasive radiofrequency field induced hyperthermic cytotoxicity in human cancer cells using cetuximab-targeted gold nanoparticles. J. Exp. Ther. Oncol. 2008, 7, 313–326.

    CAS  PubMed  Google Scholar 

  7. [7]

    Gannon, C. J.; Patra, C. R; Bhattacharya, R., Mukerjee, P.; Curley, S. A. Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. J. Nanobiotechnol. 2008, 6, 2.

    Article  Google Scholar 

  8. [8]

    Gannon, C. J.; Cherukuri, P.; Yakobson, B. I.; Cognet, L.; Kanzius, J. S.; Kittrell, C.; Weisman, R. B.; Pasquali, M.; Schmidt, H. K.; Smalley, R. E.; Curley, S. A. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 2007, 110, 2654–2665.

    Article  CAS  PubMed  Google Scholar 

  9. [9]

    Kanzius, J. S. U.S. Patent Pub. Nos. US 2006/0190063 A1, US2005/02511233 A1, US2005/0251234 A1, and World Intellectual Property Organization WO 2007/027614

  10. [10]

    Wiley, B. J.; Wang, Z.; Wei, J.; Yin, Y.; Cobden, D. H.; Xia, Y. Synthesis and electrical characterization of silver nanobeams. Nano Lett. 2006, 6, 2273–2278.

    Article  CAS  PubMed  ADS  Google Scholar 

  11. [11]

    Link, S.; El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 1999, 103, 8410–8426.

    Article  CAS  Google Scholar 

  12. [12]

    Link, S.; Burda, C.; Wang, Z. L; El-Sayed, M. A. Electron dynamics in gold and gold-silver nanoparticles: The influence of a non-equilibrium electron distribution and the size dependence of the electron-phonon relaxation. J. Chem. Phys. 1999, 111, 1255–1264.

    Article  CAS  ADS  Google Scholar 

  13. [13]

    Kreibig, U. Electronic properties of small silver particles: The optical constants and their temperature dependence. J. Phys. F: Met. Phys. 1974, 4, 999–1014.

    Article  CAS  ADS  Google Scholar 

  14. [14]

    Kittel, C. Introduction to Solid State Physics; J. Wiley & Sons: New York, NY, 2005.

    Google Scholar 

  15. [15]

    Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B. 1972, 6, 4370–4379.

    Article  CAS  ADS  Google Scholar 

  16. [16]

    Metaxas, A. C. Foundations of Electroheat: A Unified Approach; J. Wiley & Sons: New York, NY, 1996.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paul Cherukuri.

Additional information

These two authors made an equal contribution to the work.

Electronic supplementary material

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Moran, C.H., Wainerdi, S.M., Cherukuri, T.K. et al. Size-dependent joule heating of gold nanoparticles using capacitively coupled radiofrequency fields. Nano Res. 2, 400–405 (2009). https://doi.org/10.1007/s12274-009-9048-1

Download citation

Keywords

  • Resistivity
  • radiofrequency
  • gold
  • nanoparticles
  • cancer
  • thermal