Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L. Nanoshell-mediated near infrared thermal therapy of tumors under magnetic resonance guidance. P. Natl. Aacd. Sci. USA
2003, 100, 13549–13554.
Article
CAS
ADS
Google Scholar
Gobin, A. M.; Lee, M. H.; Halas, N. J.; James, W. D.; Drezek, R. A.; West, J. L. Near infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett.
2007, 7, 1929–1934.
Article
CAS
PubMed
ADS
Google Scholar
Hergt, R.; Hiergeist, R.; Hilger, I.; Kaiser, W. A.; Lapatnikov, Y.; Margel, S.; Richter, U. Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J. Magn. Magn. Mater.
2004, 270, 345–357.
Article
CAS
ADS
Google Scholar
Arnfield, M. R.; Mathew, R. P.; Tulip, J.; McPhee, M. S. Analysis of tissue optical coefficients using an approximate equation valid for comparable absorption and scattering. Phys. Med. Biol.
1992, 37, 1219–1230.
Article
CAS
PubMed
Google Scholar
Kalambur, V. S.; Longmire, E. K.; Bischof, J. C. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles. Langmuir
2005, 23, 12329–12336.
Article
Google Scholar
Curley, S. A.; Cherukuri, P.; Briggs, K.; Patra, C. R.; Upton, M.; Dolson, E.; Mukherjee, P. Noninvasive radiofrequency field induced hyperthermic cytotoxicity in human cancer cells using cetuximab-targeted gold nanoparticles. J. Exp. Ther. Oncol.
2008, 7, 313–326.
CAS
PubMed
Google Scholar
Gannon, C. J.; Patra, C. R; Bhattacharya, R., Mukerjee, P.; Curley, S. A. Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. J. Nanobiotechnol.
2008, 6, 2.
Article
Google Scholar
Gannon, C. J.; Cherukuri, P.; Yakobson, B. I.; Cognet, L.; Kanzius, J. S.; Kittrell, C.; Weisman, R. B.; Pasquali, M.; Schmidt, H. K.; Smalley, R. E.; Curley, S. A. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer
2007, 110, 2654–2665.
Article
CAS
PubMed
Google Scholar
Kanzius, J. S. U.S. Patent Pub. Nos. US 2006/0190063 A1, US2005/02511233 A1, US2005/0251234 A1, and World Intellectual Property Organization WO 2007/027614
Wiley, B. J.; Wang, Z.; Wei, J.; Yin, Y.; Cobden, D. H.; Xia, Y. Synthesis and electrical characterization of silver nanobeams. Nano Lett.
2006, 6, 2273–2278.
Article
CAS
PubMed
ADS
Google Scholar
Link, S.; El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B
1999, 103, 8410–8426.
Article
CAS
Google Scholar
Link, S.; Burda, C.; Wang, Z. L; El-Sayed, M. A. Electron dynamics in gold and gold-silver nanoparticles: The influence of a non-equilibrium electron distribution and the size dependence of the electron-phonon relaxation. J. Chem. Phys.
1999, 111, 1255–1264.
Article
CAS
ADS
Google Scholar
Kreibig, U. Electronic properties of small silver particles: The optical constants and their temperature dependence. J. Phys. F: Met. Phys.
1974, 4, 999–1014.
Article
CAS
ADS
Google Scholar
Kittel, C. Introduction to Solid State Physics; J. Wiley & Sons: New York, NY, 2005.
Google Scholar
Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B.
1972, 6, 4370–4379.
Article
CAS
ADS
Google Scholar
Metaxas, A. C. Foundations of Electroheat: A Unified Approach; J. Wiley & Sons: New York, NY, 1996.
Google Scholar