Nano Research

, Volume 2, Issue 6, pp 474–483 | Cite as

Synthesis and characterization of bionanoparticle—Silica composites and mesoporous silica with large pores

  • Zhongwei Niu
  • Saswat Kabisatpathy
  • Jinbo He
  • L. Andrew Lee
  • Jianhua Rong
  • Lin Yang
  • Godfrey Sikha
  • Branko N. Popov
  • Todd S. Emrick
  • Thomas P. Russell
  • Qian Wang
Open Access
Research Article


A sol-gel process has been developed to incorporate bionanoparticles, such as turnip yellow mosaic virus, cowpea mosaic virus, tobacco mosaic virus, and ferritin into silica, while maintaining the integrity and morphology of the particles. The structures of the resulting materials were characterized by transmission electron microscopy, small angle X-ray scattering, and N2 adsorption-desorption analysis. The results show that the shape and surface morphology of the bionanoparticles are largely preserved after being embedded into silica. After removal of the bionanoparticles by calcination, mesoporous silica with monodisperse pores, having the shape and surface morphology of the bionanoparticles replicated inside the silica, was produced,. This study is expected to lead to both functional composite materials and mesoporous silica with structurally well-defined large pores.


Mesoporous silica bionanoparticles virus ferritin sol-gel 

Supplementary material

12274_2009_9043_MOESM1_ESM.pdf (305 kb)
Supplementary material, approximately 308 KB.


  1. [1]
    Ying, J. Y.; Mehnert, C. P.; Wong, M. S. Synthesis and applications of supramolecular-templated mesoporous materials. Angew. Chem. Int. Ed. 1999, 38, 56–77.CrossRefGoogle Scholar
  2. [2]
    Davis, M. E. Ordered porous materials for emerging applications. Nature 2002, 417, 813–821.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Yiu, H. H. P.; Wright, P. A. Enzymes supported on ordered mesoporous solids: A special case of an inorganic-organic hybrid. J. Mater. Chem. 2005, 15, 3690–3700.CrossRefGoogle Scholar
  4. [4]
    Hartmann, M. Ordered mesoporous materials for bioadsorption and biocatalysis. Chem. Mater. 2005, 17, 4577–4593.CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    Lu, Y. F.; Yang, Y.; Sellinger, A.; Lu, M. C.; Huang, J. M.; Fan, H. Y.; Haddad, R.; Lopez, G.; Burns, A. R.; Sasaki, D. Y.; Shelnutt, J.; Brinker, C. J. Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites. Nature 2001, 410, 913–917.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Yang, P. D.; Zhao, D. Y.; Chmelka, B. F.; Stucky, G. D. Triblock-copolymer-directed syntheses of large-pore mesoporous silica fibers. Chem. Mater. 1998, 10, 2033–2036.CrossRefGoogle Scholar
  7. [7]
    Mal, N. K.; Fujiwara, M.; Tanaka, Y. Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature 2003, 421, 350–353.CrossRefPubMedADSGoogle Scholar
  8. [8]
    El-Safty, S. A. Review on the key controls of designer copolymer-silica mesophase monoliths (HOM-type) with large particle morphology, ordered geometry and uniform pore dimension. J. Porous Mater. 2008, 15, 369–387.CrossRefGoogle Scholar
  9. [9]
    Sanchez, C.; Boissiere, C.; Grosso, D.; Laberty, C.; Nicole, L. Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity. Chem. Mater. 2008, 20, 682–737.CrossRefGoogle Scholar
  10. [10]
    Wan, Y.; Shi, Y. F.; Zhao, D. Y. Supramolecular aggregates as templates: Ordered mesoporous polymers and carbons. Chem. Mater. 2008, 20, 932–945.CrossRefGoogle Scholar
  11. [11]
    Matos, J. R.; Kruk, M.; Mercuri, L. P.; Jaroniec, M.; Zhao, L.; Kamiyama, T.; Terasaki, O.; Pinnavaia, T. J.; Liu, Y. Ordered mesoporous silica with large cage-like pores: Structural identification and pore connectivity design by controlling the synthesis temperature and time. J. Am. Chem. Soc. 2003, 125, 821–829.CrossRefPubMedGoogle Scholar
  12. [12]
    Fan, J.; Yu, C. Z.; Lei, J.; Zhang, Q.; Li, T. C.; Tu, B.; Zhou, W. Z.; Zhao, D. Y. Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores. J. Am. Chem. Soc. 2005, 127, 10794–10795.CrossRefPubMedGoogle Scholar
  13. [13]
    Douglas, T.; Young, M. Viruses: Making friends with old foes. Science 2006, 312, 873–875.CrossRefPubMedADSGoogle Scholar
  14. [14]
    Lee, L. A.; Wang, Q. Adaptations of nanoscale viruses and other protein cages for medical applications. Nanomedicine 2006, 2, 137–149.PubMedGoogle Scholar
  15. [15]
    Kramer, R. M.; Li, C.; Carter, D. C.; Stone, M. O.; Naik, R. R. Engineered protein cages for nanomaterial synthesis. J. Am. Chem. Soc. 2004, 126, 13282–13286.CrossRefPubMedGoogle Scholar
  16. [16]
    Meldrum, F. C.; Heywood, B. R.; Mann, S. Magnetoferritin: In vitro synthesis of a novel magnetic protein. Science 1992, 257, 522–523.CrossRefPubMedADSGoogle Scholar
  17. [17]
    Flenniken, M. L.; Willits, D. A.; Brumfield, S.; Young, M. J.; Douglas, T. The small heat shock protein cage from methanococcus jannaschii is a versatile nanoscale platform for genetic and chemical modification. Nano Lett. 2003, 3, 1573–1576.CrossRefADSGoogle Scholar
  18. [18]
    Seebeck, F. P.; Woycechowsky, K. J.; Zhuang, W.; Rabe, J. P.; Hilvert, D. A simple tagging system for protein encapsulation. J. Am. Chem. Soc. 2006, 128, 4516–4517.CrossRefPubMedGoogle Scholar
  19. [19]
    Domingo, G. J.; Orru, S.; Perham, R. N. Multiple display of peptides and proteins on a macromolecular scaffold derived from a multienzyme complex. J. Mol. Biol. 2001, 305, 259–267.CrossRefPubMedGoogle Scholar
  20. [20]
    Paavola, C. D.; Chan, S. L.; Li, Y.; Mazzarella, K. M.; McMillan, R. A.; Trent, J. D. A versatile platform for nanotechnology based on circular permutation of a chaperonin protein. Nanotechnology 2006, 17, 1171–1176.CrossRefADSGoogle Scholar
  21. [21]
    Campos, S. K.; Barry, M. A. Current advances and future challenges in adenoviral vector biology and targeting. Curr. Gene Ther. 2007, 7, 189–204.CrossRefPubMedGoogle Scholar
  22. [22]
    Manchester, M.; Singh, P. Virus-based nanoparticles (VNPs): Platform technologies for diagnostic imaging. Adv. Drug Deliv. Rev. 2006, 58, 1505–1522.CrossRefPubMedGoogle Scholar
  23. [23]
    Ramqvist, T.; Andreasson, K.; Dalanis, T. Vaccination, immune and gene therapy based on virus-like particles against viral infections and cancer. Expert Opin. Biol. Ther. 2007, 7, 997–1007.CrossRefPubMedGoogle Scholar
  24. [24]
    Canizares, M. C.; Nicholson, L.; Lomonossoff, G. P. Use of viral vectors for vaccine production in plants. Immunol. Cell Biol. 2005, 83, 263–270.CrossRefPubMedGoogle Scholar
  25. [25]
    Streatfield, S. J. Oral hepatitis B vaccine candidates produced and delivered in plant material. Immunol. Cell Biol. 2005, 83, 257–262.Google Scholar
  26. [26]
    Niu, Z.; Bruckman, M.; Kotakadi, V. S.; He, J.; Emrick, T.; Russell, T. P.; Yang, L.; Wang, Q. Study and characterization of tobacco mosaic virus head-to-tail assembly assisted by aniline polymerization. Chem. Commun. 2006, 3019–3021.Google Scholar
  27. [27]
    Mao, C.; Solis, D. J.; Reiss, B. D.; Kottmann, S. T.; Sweeney, R. Y.; Hayhurst, A.; Georgiou, G.; Iverson, B.; Belcher, A. M. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 2004, 303, 213–217.CrossRefPubMedADSGoogle Scholar
  28. [28]
    Niu, Z.; Bruckman, M.; Harp, B.; Mello, C. M.; Wang, Q. Bacteriophage M13 as scaffold for preparing conductive polymeric composite fibers. Nano Res. 2008, 1, 235–241.CrossRefGoogle Scholar
  29. [29]
    Rong, J. H.; Lee, L. A.; Li, K.; Harp, B.; Mello, C. M.; Niu, Z. W.; Wang, Q. Oriented cell growth on self-assembled bacteriophage M13 thin films. Chem. Commun. 2008, 5185–5187.Google Scholar
  30. [30]
    Kaur, G.; Valarmathi, M. T.; Potts, J. D.; Wang, Q. The promotion of osteoblastic differentiation of rat bone marrow stromal cells by a polyvalent plant mosaic virus. Biomaterials 2008, 29, 4074–4081.CrossRefPubMedGoogle Scholar
  31. [31]
    Li, T.; Niu, Z. W.; Emrick, T.; Russell, T. R.; Wang, Q. Core/shell biocomposites from the hierarchical assembly of bionanoparticles and polymer. Small 2008, 4, 1624–1629.CrossRefPubMedGoogle Scholar
  32. [32]
    Lee, L. A.; Niu, Z.; Wang, Q. Viruses and virus-like protein assemblies—Chemically programmable nanoscale building blocks. Nano Res. accepted.Google Scholar
  33. [33]
    Rong, J.; Oberbeck, F.; Wang, X.; Li, X.; Oxsher, J.; Niu, Z.; Wang, Q. Tobacco mosaic virus templated synthesis of one dimensional inorganic/polymer hybrid fibres. J. Mater. Chem. 2009, 19, 2841–2845.CrossRefGoogle Scholar
  34. [34]
    Lin, Y.; Boker, A.; He, J.; Sill, K.; Xiang, H.; Abetz, C.; Li, X.; Wang, J.; Emrick, T.; Long, S.; Wang, Q.; Balazs, A.; Russell, T. P. Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 2005, 434, 55–59.CrossRefPubMedADSGoogle Scholar
  35. [35]
    Russell, J. T.; Lin, Y.; Böker, A.; Long, S.; Carl, P.; Zettl, H.; He, J.; Sill, K.; Tangiraia, R.; Emrick, T.; Littrell, K.; Thiyagarajan, P.; Cookson, D.; Fery, A.; Wang, Q.; Russell, T. P. Self-assembly and cross-linking of bionanoparticles at liquid liquid interfaces. Angew. Chem. Int. Ed. 2005, 44, 2420–2426.CrossRefGoogle Scholar
  36. [36]
    Avnir, D.; Coradin, T.; Lev, O.; Livage, J. Recent bioapplications of sol-gel materials. J. Mater. Chem. 2006, 16, 1013–1030.CrossRefGoogle Scholar
  37. [37]
    Ferrer, M. L.; del Monte, F.; Levy, D. A novel and simple alcohol-free sol-gel route for encapsulation of labile proteins. Chem. Mater. 2002, 14, 3619–3621.CrossRefGoogle Scholar
  38. [38]
    Gill, I.; Ballesteros, A. Encapsulation of biologicals within silicate, siloxane, and hybrid sol-gel polymers: An efficient and generic approach. J. Am. Chem. Soc. 1998, 120, 8587–8598.CrossRefGoogle Scholar
  39. [39]
    Lan, E. H.; Dunn, B.; Valentine, J. S.; Zink, J. I. Encapsulation of the ferritin protein in sol-gel derived silica glasses. J. Sol-Gel Sci. Techn. 1996, 7, 109–116.CrossRefGoogle Scholar
  40. [40]
    Tartaj, P.; Gonzalez-Carreno, T.; Ferrer, M. L.; Serna, C. J. Metallic nanomagnets randomly dispersed in spherical colloids: Toward a universal route for the preparation of colloidal composites containing nanoparticles. Angew. Chem. Int. Ed. 2004, 43, 6304–6307.CrossRefGoogle Scholar
  41. [41]
    Fowler, C. E.; Shenton, W.; Stubbs, G.; Mann, S. Tobacco mosaic virus liquid crystals as templates for the interior design of silica mesophases and nanoparticles. Adv. Mater. 2001, 13, 1266–1269.CrossRefGoogle Scholar
  42. [42]
    Royston, E.; Lee, S. Y.; Culver, J. N.; Harris, M. T. Characterization of silica-coated tobacco mosaic virus. J. Coll. Int. Sci. 2006, 298, 706–712.CrossRefGoogle Scholar
  43. [43]
    Klug, A.; Finch, J. T.; Franklin, R. E. Structure of turnip yellow mosaic virus. Nature 1957, 179, 683–684.CrossRefPubMedADSGoogle Scholar
  44. [44]
    Canady, M. A.; Larson, S. B.; Day, J.; McPherson, A. Crystal structure of turnip yellow mosaic virus. Nat. Struct. Biol. 1996, 3, 771–781.CrossRefPubMedGoogle Scholar
  45. [45]
    Wang, Q.; Raja, K. S.; Janda, K. D.; Lin, T. W.; Finn, M. G. Blue fluorescent antibodies as reporters of steric accessibility in virus conjugates. Bioconjugate Chem. 2003, 14, 38–43.CrossRefGoogle Scholar
  46. [46]
    Wang, Q.; Lin, T. W.; Johnson, J. E.; Finn, M. G. Natural supramolecular building blocks: Cysteine-added mutants of cowpea mosaic virus. Chem. Biol. 2002, 9, 813–819.CrossRefPubMedGoogle Scholar
  47. [47]
    Wang, Q.; Kaltgrad, E.; Lin, T. W.; Johnson, J. E.; Finn, M. G. Natural supramolecular building blocks: Wild-type cowpea mosaic virus. Chem. Biol. 2002, 9, 805–811.CrossRefPubMedGoogle Scholar
  48. [48]
    Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless, K. B.; Finn, M. G. Bioconjugation by copper(I)-catalyzed azide-alkyne [3+2] cycloaddition. J. Am. Chem. Soc. 2003, 125, 3192–3193.CrossRefPubMedGoogle Scholar
  49. [49]
    Klug, A. The tobacco mosaic virus particle: Structure and assembly. Philos. Trans. R. Soc. B 1999, 354, 531–535.CrossRefGoogle Scholar
  50. [50]
    Shenton, W.; Douglas, T.; Young, M.; Stubbs, G.; Mann, S. Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv. Mater. 1999, 11, 253–256.CrossRefGoogle Scholar
  51. [51]
    Fonoberov, V. A.; Balandin, A. A. Phonon confinement effects in hybrid virus-inorganic nanotubes for nanoelectronic applications. Nano Lett. 2005, 5, 1920–1923.CrossRefPubMedADSGoogle Scholar
  52. [52]
    Knez, M.; Sumser, M.; Bittner, A. M.; Wege, C.; Jeske, H.; Martin, T. P.; Kern, K. Spatially selective nucleation of metal clusters on the tobacco mosaic virus. Adv. Funct. Mater. 2004, 14, 116–124.CrossRefGoogle Scholar
  53. [53]
    Yi, H.; Nisar, S.; Lee, S. Y.; Powers, M. A.; Bentley, W. E.; Payne, G. F.; Ghodssi, R.; Rubloff, G. W.; Harris, M. T.; Culver, J. N. Patterned assembly of genetically modified viral nanotemplates via nucleic acid hybridization. Nano Lett. 2005, 5, 1931–1936.CrossRefPubMedADSGoogle Scholar
  54. [54]
    Yi, H.; Rubloff, G. W.; Culver, J. N. TMV microarrays: Hybridization-based assembly of DNA-programmed viral nanotemplates. Langmuir 2007, 23, 2663–2667.CrossRefPubMedGoogle Scholar
  55. [55]
    Tan, W. S.; Lewis, C. L.; Horelik, N. E.; Pregibon, D. C.; Doyle, P. S.; Yi, H. Hierarchical assembly of viral nanotemplates with encoded microparticles via nucleic acid hybridization. Langmuir 2008, 24, 12483–12488.CrossRefPubMedGoogle Scholar
  56. [56]
    Balci, S.; Leinberger, D. M.; Knez, M.; Bittner, A. M.; Boes, F.; Kadri, A.; Wege, C.; Jeske, H.; Kern, K. Printing and aligning mesoscale patterns of tobacco mosaic virus on surfaces. Adv. Mater. 2008, 20, 2195–2200.CrossRefGoogle Scholar
  57. [57]
    Wong, K. K. W.; Douglas, T.; Gider, S.; Awschalom, D. D.; Mann, S. Biomimetic synthesis and characterization of magnetic proteins (magnetoferritin). Chem. Mater. 1998, 10, 279–285.CrossRefGoogle Scholar
  58. [58]
    Douglas, T.; Dickson, D. P. E.; Betteridge, S.; Charnock, J.; Garner, C. D.; Mann, S. Synthesis and structure of an iron(III) sulfide-ferritin bioinorganic nanocomposite. Science 1995, 269, 54–57.CrossRefPubMedADSGoogle Scholar
  59. [59]
    Stark, V.; Douglas, T. Nanophase cobalt oxyhydroxide mineral synthesized within the protein cage of ferritin. Inorg. Chem. 1999, 39, 1828–1830.Google Scholar
  60. [60]
    Kuang, D. B.; Brezesinski, T.; Smarsly, B. Hierarchical porous silica materials with a trimodal pore system using surfactant templates. J. Am. Chem. Soc. 2004, 126, 10534–10535.CrossRefPubMedGoogle Scholar
  61. [61]
    Svergun, D. I.; Koch, M. H. J. Small-angle scattering studies of biological macromolecules in solution. Rep. Prog. Phys. 2003, 66, 1735–1782.CrossRefADSGoogle Scholar
  62. [62]
    Nedoluzhko, A.; Douglas, T. Ordered association of tobacco mosaic virus in the presence of divalent metal ions. J. Inorg. Biochem. 2001, 84, 233–240.CrossRefPubMedGoogle Scholar
  63. [63]
    Niu, Z. W.; Bruckman, M. A.; Li, S. Q.; Lee, L. A.; Lee, B.; Pingali, S. V.; Thiyagarajan, P.; Wang, Q. Assembly of tobacco mosaic virus into fibrous and macroscopic bundled arrays mediated by surface aniline polymerization. Langmuir 2007, 23, 6719–6724.CrossRefPubMedGoogle Scholar
  64. [64]
    Niu, Z.; Liu, J.; Lee, L. A.; Bruckman, M. A.; Zhao, D.; Koley, G.; Wang, Q. Biological templated synthesis of water-soluble conductive polymeric nanowires. Nano Lett. 2007, 7, 3729–3733.CrossRefPubMedADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Zhongwei Niu
    • 1
  • Saswat Kabisatpathy
    • 1
  • Jinbo He
    • 2
  • L. Andrew Lee
    • 1
  • Jianhua Rong
    • 1
  • Lin Yang
    • 3
  • Godfrey Sikha
    • 4
  • Branko N. Popov
    • 4
  • Todd S. Emrick
    • 2
  • Thomas P. Russell
    • 2
  • Qian Wang
    • 1
  1. 1.Department of Chemistry and Biochemistry and NanocenterUniversity of South CarolinaColumbiaUSA
  2. 2.Department of Polymer Science and EngineeringUniversity of MassachusettsAmherstUSA
  3. 3.Brookhaven National LaboratoryUptonUSA
  4. 4.Department of Chemical EngineeringUniversity of South CarolinaColumbiaUSA

Personalised recommendations