Nano Research

, Volume 2, Issue 5, pp 416–424 | Cite as

Synthesis of WS2 and MoS2 fullerene-like nanoparticles from solid precursors

  • Inna Wiesel
  • Hamutal Arbel
  • Ana Albu-Yaron
  • Ronit Popovitz-Biro
  • Jeffrey M. Gordon
  • Daniel Feuermann
  • Reshef Tenne
Open Access
Research Article


Inorganic fullerene-like WS2 and MoS2 nanoparticles have been synthesized using exclusively solid precursors, by reaction of the corresponding metal oxide nanopowder, sulfur and a hydrogen-releasing agent (NaBH4 or LiAlH4), achieved either by conventional furnace heating up to ∼900 °C or by photothermal ablation at far higher temperatures driven by highly concentrated white light. In contrast to the established syntheses that require toxic and hazardous gases, working solely with solid precursors permits relatively safer reactor conditions conducive to industrial scale-up.


Nanoparticles fullerene-like synthesis WS2 MoS2 


  1. [1]
    Tenne, R.; Margulis, L.; Genut, M.; Hodes, G. Polyhedral and cylindrical structures of tungsten disulfide. Nature 1992, 360, 444–446.CrossRefADSGoogle Scholar
  2. [2]
    Margulis, L.; Salitra, G.; Tenne, R.; Talianker, M. Nested fullerene-like structures. Nature 1993, 365, 113–114.CrossRefADSGoogle Scholar
  3. [3]
    Hershfinkel, M.; Gheber, L. A.; Volterra, V.; Hutchison, J. L.; Margulis, L.; Tenne, R. Nested polyhedra of MX2 (M=W, Mo; X=S, Se) probed by high-resolution electronmicroscopy and scanning-tunneling-microscopy. J. Am. Chem. Soc. 1994, 116, 1914–1917.CrossRefGoogle Scholar
  4. [4]
    Nath, M.; Rao, C. N. R. New metal disulfide nanotubes. J. Am. Chem. Soc. 2001, 123, 4841–4842.CrossRefPubMedGoogle Scholar
  5. [5]
    Schuffenhauer, C.; Popovitz-Biro, R.; Tenne, R. Synthesis of NbS2 nanoparticles with (nested) fullerene-like structure (IF). J. Mater. Chem. 2002, 12, 1587–1591.CrossRefGoogle Scholar
  6. [6]
    Schuffenhauer, C.; Parkinson, B. A.; Jin-Phillipp, N. Y.; Joly-Pottuz, L.; Martin, J. M.; Popovitz-Biro, R.; Tenne, R. Synthesis of fullerene-like tantalum disulfide nanoparticles by a gas-phase reaction and laser ablation. Small 2005, 1, 1100–1109.CrossRefPubMedGoogle Scholar
  7. [7]
    Margolin, A.; Popovitz-Biro, R.; Albu-Yaron, A.; Rapoport, L.; Tenne, R. Inorganic fullerene-like nanoparticles of TiS2. Chem. Phys. Lett. 2005, 411, 162–166.CrossRefADSGoogle Scholar
  8. [8]
    Coleman, K. S.; Sloan, J.; Hanson, N. A.; Brown, G.; Clancy, G. P.; Terrones, M.; Terrones, H.; Green, M. L. H. The formation of ReS2 inorganic fullerene-like structures containing Re4 parallelogram units and metal metal bonds. J. Am. Chem. Soc. 2002, 124, 11580–11581.CrossRefPubMedGoogle Scholar
  9. [9]
    Brorson, M.; Hansen, T. W.; Jacobsen, C. J. H. Rhenium(IV) sulfide nanotubes. J. Am. Chem. Soc. 2002, 124, 11582–11583.CrossRefPubMedGoogle Scholar
  10. [10]
    Yella, A.; Therese, H. A.; Zink, N.; Panthoefer, M.; Tremel, W. Large scale MOCVD synthesis of hollow ReS2 nanoparticles with nested fullerene-like structure. Chem. Mater. 2008, 20, 3587–3593.CrossRefGoogle Scholar
  11. [11]
    Albu-Yaron, A.; Arad, T.; Popovitz-Biro, R.; Bar-Sadan, M.; Prior, Y.; Jansen, M.; Tenne, R. Preparation and structural characterization of stable Cs2O closed-cage structures. Angew. Chem. Int. Ed. 2005, 44, 4169–4172.CrossRefGoogle Scholar
  12. [12]
    Avivi, S.; Mastai, Y.; Gedanken, A. A new fullerene-like inorganic compound fabricated by the sonolysis of an aqueous solution of TlCl3. J. Am. Chem. Soc. 2000, 122, 4331–4334.CrossRefGoogle Scholar
  13. [13]
    Sallacan, N.; Popovitz-Biro, R.; Tenne, R. Nanoparticles of CdI2 with closed cage structures obtained via electronbeam irradiation. Solid-State Sci. 2003, 5, 905–908.CrossRefADSGoogle Scholar
  14. [14]
    Chopra, N. G.; Luyken, R. J.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Boron-nitride nanotubes. Science 1995, 269, 966–967.CrossRefPubMedADSGoogle Scholar
  15. [15]
    Zhan, J. H.; Bando, Y.; Hu, J. P.; Golberg, D. Bulk synthesis of single-crystalline magnesium oxide nanotubes. Inorg. Chem. 2004, 43, 2462–2464.CrossRefPubMedGoogle Scholar
  16. [16]
    Fan, H. J.; Gosele, U.; Zacharias, M. Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: A review. Small 2007, 3, 1660–1671.CrossRefPubMedGoogle Scholar
  17. [17]
    Rao, C. N. R.; Nath, M. Inorganic nanotubes. Dalton Trans. 2003, 1–24.Google Scholar
  18. [18]
    Remskar, M. Inorganic nanotubes. Adv. Mater. 2004, 16, 1497–1504.CrossRefGoogle Scholar
  19. [19]
    Tenne, R. Inorganic nanotubes and fullerene-like nanoparticles. Nat. Nanotechnol. 2006, 1, 103–111.CrossRefPubMedADSGoogle Scholar
  20. [20]
    Rapoport, L.; Bilik, Y.; Feldman, Y.; Homyonfer, M.; Cohen, S. R.; Tenne, R. Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 1997, 387, 791–793.CrossRefADSGoogle Scholar
  21. [21]
    Naffakh, M.; Martin, Z.; Fanegas, N.; Marco, C.; Gomez, M. A.; Jimenez, I. Influence of inorganic fullerene-like WS2 nanoparticies on the thermal behavior of isotactic polypropylene. J. Polym. Sci., Part B: Polym. Phys. 2007, 45, 2309–2321.CrossRefADSGoogle Scholar
  22. [22]
    Hou, X. H.; Shan, C. X.; Choy, K. L. Microstructures and tribological properties of PEEK-based nanocomposite coatings incorporating inorganic fullerene-like nanoparticles. Surf. Coat. Technol. 2008, 202, 2287–2291.CrossRefGoogle Scholar
  23. [23]
    Parilla, P. A.; Dillon, A. C.; Jones, K. M.; Riker, G.; Schulz, D. L.; Ginley, D. S.; Heben, M. J. The first true inorganic fullerenes? Nature 1999, 397, 114–114.CrossRefADSGoogle Scholar
  24. [24]
    Golberg, D.; Bando, Y.; Stephan, O.; Kurashima, K. Octahedral boron nitride fullerenes formed by electron beam irradiation. Appl. Phys. Lett. 1998, 73, 2441–2443.CrossRefADSGoogle Scholar
  25. [25]
    Jose Yacaman, M.; Lopez, H.; Santiago, P.; Galvan, D. H.; Garzon, I. L.; Reyes, A. Studies of MoS2 structures produced by electron irradiation. Appl. Phys. Lett. 1996, 69, 1065–1067.CrossRefADSGoogle Scholar
  26. [26]
    Remskar, M.; Skraba, Z.; Regula, M.; Ballif, C.; Sanjines, R.; Levy, F. New crystal structures of WS2: Microtubes, ribbons, and ropes. Adv. Mater. 1998, 10, 246–249.CrossRefGoogle Scholar
  27. [27]
    Feldman, Y.; Zak, A.; Popovitz-Biro, R.; Tenne, R. New reactor for production of tungsten disulfide hollow onion-like (inorganic fullerene-like) nanoparticles. Solid-State Sci. 2000, 2, 663–672.CrossRefADSGoogle Scholar
  28. [28]
    Margolin, A.; Rosentsveig, R.; Albu-Yaron, A.; Popovitz-Biro, R.; Tenne, R. Study of the growth mechanism of WS2 nanotubes produced by a fluidized bed reactor. J. Mater. Chem. 2004, 14, 617–624.CrossRefGoogle Scholar
  29. [29]
    Zak, A.; Genut, M.; Tenne, R.; Fleischer, N. Insight into the growth mechanism of WS2 nanotubes in the scaledup fluidized bed reactors. Nano, in press.Google Scholar
  30. [30]
    Song, X. C.; Zhao, Y.; Zheng, Y. F.; Yang, E. Large-scale synthesis of MoS2 bucky onions. Adv. Eng. Mater. 2007, 9, 96–98.CrossRefGoogle Scholar
  31. [31]
    Yang, H. B.; Liu, S. K.; Lil, J. X.; Li, M. H.; Peng, G.; Zou, G. T. Synthesis of inorganic fullerene-like WS2 nanoparticles and their lubricating performance. Nanotechnology 2006, 17, 1512–1519.CrossRefADSGoogle Scholar
  32. [32]
    Albu-Yaron, A.; Arad, T.; Levy, M.; Popovitz-Biro, R.; Tenne, R.; Gordon, J. M.; Feuermann, D.; Katz, E. A.; Jansen, M.; Muhle, C. Synthesis of fullerene-like Cs2O nanoparticles by concentrated sunlight. Adv. Mater. 2006, 18, 2993–2996.CrossRefGoogle Scholar
  33. [33]
    Gordon, J. M.; Katz, E. A.; Feuermann, D.; Albu-Yaron, A.; Levy, M.; Tenne, R. Singular MoS2, SiO2 and Si nanostructures-synthesis by solar ablation. J. Mater. Chem. 2008, 18, 458–462.CrossRefGoogle Scholar
  34. [34]
    Feuermann, D.; Gordon, J. M. High-irradiance reactors with unfolded aplanatic optics. Appl. Opt. 2008, 47, 5722–5727.CrossRefPubMedADSGoogle Scholar
  35. [35]
    Zak, A.; Feldman, Y.; Alperovich, V.; Rosentsveig, R.; Tenne, R. Growth mechanism of MoS2 fullerene-like nanoparticles by gas-phase synthesis. J. Am. Chem. Soc. 2000, 122, 11108–11116.CrossRefGoogle Scholar
  36. [36]
    Feldman, Y.; Frey, G. L.; Homyonfer, M.; Lyakhovitskaya, V.; Margulis, L.; Cohen, H.; Hodes, G.; Hutchison, J. L.; Tenne, R. Bulk synthesis of inorganic fullerene-like MS2 (M=Mo, W) from the respective trioxides and the reaction mechanism. J. Am. Chem. Soc. 1996, 118, 5362–5367.CrossRefGoogle Scholar
  37. [37]
    Feldman, Y.; Lyakhovitskaya, V.; Tenne, R. Kinetics of nested inorganic fullerene-like nanoparticle formation. J. Am. Chem. Soc. 1998, 120, 4176–4183.CrossRefGoogle Scholar
  38. [38]
    Sarin, V. K. Morphological changes occurring during reduction of WO3. J. Mater. Chem. 1975, 10, 593–598.ADSGoogle Scholar
  39. [39]
    Hu, J. Q.; Bando, Y.; Zhan, J. H.; Liu, Z. W.; Golberg, D. Uniform and high-quality submicrometer tubes of GaS layered crystals. Appl. Phys. Lett. 2005, 87, 153112.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Inna Wiesel
    • 1
  • Hamutal Arbel
    • 1
  • Ana Albu-Yaron
    • 1
  • Ronit Popovitz-Biro
    • 2
  • Jeffrey M. Gordon
    • 3
    • 4
  • Daniel Feuermann
    • 3
  • Reshef Tenne
    • 1
  1. 1.Department of Materials and InterfacesWeizmann Institute of ScienceRehovotIsrael
  2. 2.Electron Microscopy UnitWeizmann Institute of ScienceRehovotIsrael
  3. 3.Department of Solar Energy and Environmental Physics, Jacob Blaustein Institutes for Desert ResearchBen-Gurion University of the NegevBeer Sheva CampusIsrael
  4. 4.The Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical EngineeringBen-Gurion University of the NegevBeer ShevaIsrael

Personalised recommendations