Nano Research

, Volume 2, Issue 2, pp 167–175 | Cite as

Theory and practice of “Striping” for improved ON/OFF Ratio in carbon nanonet thin film transistors

Open Access
Research Article

Abstract

A new technique to reduce the influence of metallic carbon nanotubes (CNTs)—relevant for large-scale integrated circuits based on CNT-nanonet transistors—is proposed and verified. Historically, electrical and chemical filtering of the metallic CNTs have been used to improve the ON/OFF ratio of CNT-nanonet transistors; however, the corresponding degradation in ON-current has made these techniques somewhat unsatisfactory. Here, we abandon the classical approaches in favor of a new approach based on relocation of asymmetric percolation threshold of CNT-nanonet transistors by a technique called “striping”; this allows fabrication of transistors with ON/OFF ratio >1000 and ON-current degradation no more than a factor of 2. We offer first principle numerical models, experimental confirmation, and renormalization arguments to provide a broad theoretical and experimental foundation of the proposed method.

Keywords

Nanonet Carbon nanotube flexible electronics thin film transistors 

References

  1. [1]
    Cao, Q.; Kim, H. S.; Pimparkar, N.; Kulkarni, J. P.; Wang, C.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Duan, X. F.; Niu, C. M.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. High-performance thinfilm transistors using semiconductor nanowires and nanoribbons. Nature 2003, 425, 274–278.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Novak, J. P.; Lay, M. D.; Perkins, F. K.; Snow, E. S. Macroelectronic applications of carbon nanotube networks. Solid State Electron. 2004, 48, 1753–1756.CrossRefADSGoogle Scholar
  4. [4]
    Novak, J. P.; Snow, E. S.; Houser, E. J.; Park, D.; Stepnowski, J. L.; McGill, R. A. Nerve agent detection using networks of single-walled carbon nanotubes. Appl. Phys. Lett. 2003, 83, 4026–4028.CrossRefADSGoogle Scholar
  5. [5]
    Snow, E. S.; Novak, J. P.; Campbell, P. M.; Park, D. Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 2003, 82, 2145–2147.CrossRefADSGoogle Scholar
  6. [6]
    Szleifer, I.; Yerushalmi-Rozen, R. Polymers and carbon nanotubes Dimensionality, interactions and nanotechnology. Polymer 2005, 46, 7803–7808.CrossRefGoogle Scholar
  7. [7]
    Zhou, Y. X.; Gaur, A.; Hur, S. H.; Kocabas, C.; Meitl, M. A.; Shim, M.; Rogers, J. A. p-channel, n-channel thin film transistors and p n diodes based on single wall carbon nanotube networks. Nano Lett. 2004, 4, 2031–2035.CrossRefADSGoogle Scholar
  8. [8]
    Kumar, S.; Murthy, J. Y.; Alam, M. A. Percolating conduction in finite nanotube networks. Phys. Rev. Lett. 2005, 95/6, 066802.Google Scholar
  9. [9]
    Pimparkar, N.; Guo, J.; Alam, M. A. Performance assessment of sub-percolating nanobundle network transistors by an analytical model. IEDM Tech.Digest 2005, 21, 541–544.Google Scholar
  10. [10]
    Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236.CrossRefPubMedADSGoogle Scholar
  11. [11]
    Cao, Q.; Hur, S. H.; Zhu, Z. T.; Sun, Y.; Wang, C.J.; Meitl, M. A.; Shim, M.; Rogers, J. A. Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv. Mater. 2006, 18, 304.CrossRefGoogle Scholar
  12. [12]
    Collins, P. C.; Arnold, M. S.; Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 2001, 292, 706–709.CrossRefPubMedADSGoogle Scholar
  13. [13]
    Kumar, S.; Blanchet, G. B.; Hybertsen, M. S.; Murthy, J. Y.; Alam, M. A. Performance of carbon nanotube-dispersed thin-film transistors. Appl. Phys. Lett. 2006, 89, 143501.Google Scholar
  14. [14]
    Datta S. Quantum Transport: Atom to Transistor, 2nd ed.; Cambridge University Press: Cambridge, 2005.MATHGoogle Scholar
  15. [15]
    Stauffer, D.; Aharony, A. Introduction to Percolation Theory; Taylor and Francis: London, 1992.Google Scholar
  16. [16]
    Haddon, R. C.; Sippel, J.; Rinzler, A. G.; Papadimitrakopoulos, F. Purification and separation of carbon nanotubes. MRS Bull. 2004, 29, 252–259.Google Scholar
  17. [17]
    Wang, C.; Cao, Q.; Ozel, T.; Gaur, A.; Rogers, J. A.; Shim, M. Electronically selective chemical functionalization of carbon nanotubes: Correlation between Raman spectral and electrical responses. J. Am. Chem. Soc. 2005, 127, 11460–11468.CrossRefPubMedGoogle Scholar
  18. [18]
    Arnold, M. S.; Stupp, S. I.; Hersam, M. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 2005, 5, 713–718.CrossRefPubMedADSGoogle Scholar
  19. [19]
    Seidel, R.; Graham, A. P.; Unger, E.; Duesberg, G. S.; Liebau, M.; Steinhoegl, W.; Kreupl, F.; Hoenlein, W. Highcurrent nanotube transistors. Nano Lett. 2004, 4, 831–834.CrossRefADSGoogle Scholar
  20. [20]
    Pimparkar, N.; Guo, J.; Alam, M. A. Performance assessment of subpercolating nanobundle network thinfilm transistors by an analytical model. IEEE T. Electron Dev. 2007, 54, 637–644.CrossRefADSGoogle Scholar
  21. [21]
    Li, Y. M.; Mann, D.; Rolandi, M.; Kim, W.; Ural, A.; Hung, S.; Javey, A.; Cao, J.; Wang, D. W.; Yenilmez, E.; Wang, Q.; Gibbons, J. F.; Nishi, Y.; Dai, H. J. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett. 2004, 4, 317–321.CrossRefADSGoogle Scholar
  22. [22]
    Pimparkar, N.; Kumar, S.; Cao, Q.; Rogers, J. A.; Murthy, J. Y.; Alam, M. A. Current-voltage characteristics of long-channel nanobundle thin-film transistors: A “bottomup” perspective. IEEE Electron Dev. L. 2007, 28, 157–160CrossRefADSGoogle Scholar
  23. [23]
    Pimparkar N.; Kocabas C.; Kang S. J.; Rogers J. A.; Alam M. A. Electron Dev. Lett. 2007, 28, 593–595.CrossRefADSGoogle Scholar
  24. [24]
    Kocabas, C.; Pimparkar, N.; Yesilyurt, O.; Alam, M. A.; Rogers, J. A. Experimental and theoretical studies of transport through large scale, partially aligned arrays of single-walled carbon nanotubes in thin film type transistors. Nano Lett. 2007, 7, 1195–1202.CrossRefPubMedADSGoogle Scholar
  25. [25]
    Seager, C. H.; Pike, G. E. Percolation and conductivity: A computer study. Phys. Rev. B 1974, 10, 1421.CrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Department of ChemistryUniversity of IllinoisUrbanaUSA
  3. 3.Materials and Science EngineeringUniversity of IllinoisUrbanaUSA
  4. 4.Electrical and Computer EngineeringUniversity of IllinoisUrbanaUSA
  5. 5.Beckman InstituteUniversity of IllinoisUrbanaUSA
  6. 6.Frederick and Seitz Materials Res. LabUniversity of IllinoisUrbanaUSA

Personalised recommendations