Skip to main content

Theory and practice of “Striping” for improved ON/OFF Ratio in carbon nanonet thin film transistors

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A new technique to reduce the influence of metallic carbon nanotubes (CNTs)—relevant for large-scale integrated circuits based on CNT-nanonet transistors—is proposed and verified. Historically, electrical and chemical filtering of the metallic CNTs have been used to improve the ON/OFF ratio of CNT-nanonet transistors; however, the corresponding degradation in ON-current has made these techniques somewhat unsatisfactory. Here, we abandon the classical approaches in favor of a new approach based on relocation of asymmetric percolation threshold of CNT-nanonet transistors by a technique called “striping”; this allows fabrication of transistors with ON/OFF ratio >1000 and ON-current degradation no more than a factor of 2. We offer first principle numerical models, experimental confirmation, and renormalization arguments to provide a broad theoretical and experimental foundation of the proposed method.

References

  1. Cao, Q.; Kim, H. S.; Pimparkar, N.; Kulkarni, J. P.; Wang, C.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Duan, X. F.; Niu, C. M.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. High-performance thinfilm transistors using semiconductor nanowires and nanoribbons. Nature 2003, 425, 274–278.

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Novak, J. P.; Lay, M. D.; Perkins, F. K.; Snow, E. S. Macroelectronic applications of carbon nanotube networks. Solid State Electron. 2004, 48, 1753–1756.

    Article  CAS  ADS  Google Scholar 

  4. Novak, J. P.; Snow, E. S.; Houser, E. J.; Park, D.; Stepnowski, J. L.; McGill, R. A. Nerve agent detection using networks of single-walled carbon nanotubes. Appl. Phys. Lett. 2003, 83, 4026–4028.

    Article  CAS  ADS  Google Scholar 

  5. Snow, E. S.; Novak, J. P.; Campbell, P. M.; Park, D. Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 2003, 82, 2145–2147.

    Article  CAS  ADS  Google Scholar 

  6. Szleifer, I.; Yerushalmi-Rozen, R. Polymers and carbon nanotubes Dimensionality, interactions and nanotechnology. Polymer 2005, 46, 7803–7808.

    Article  CAS  Google Scholar 

  7. Zhou, Y. X.; Gaur, A.; Hur, S. H.; Kocabas, C.; Meitl, M. A.; Shim, M.; Rogers, J. A. p-channel, n-channel thin film transistors and p n diodes based on single wall carbon nanotube networks. Nano Lett. 2004, 4, 2031–2035.

    Article  CAS  ADS  Google Scholar 

  8. Kumar, S.; Murthy, J. Y.; Alam, M. A. Percolating conduction in finite nanotube networks. Phys. Rev. Lett. 2005, 95/6, 066802.

    Google Scholar 

  9. Pimparkar, N.; Guo, J.; Alam, M. A. Performance assessment of sub-percolating nanobundle network transistors by an analytical model. IEDM Tech.Digest 2005, 21, 541–544.

    Google Scholar 

  10. Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236.

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Cao, Q.; Hur, S. H.; Zhu, Z. T.; Sun, Y.; Wang, C.J.; Meitl, M. A.; Shim, M.; Rogers, J. A. Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv. Mater. 2006, 18, 304.

    Article  CAS  Google Scholar 

  12. Collins, P. C.; Arnold, M. S.; Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 2001, 292, 706–709.

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Kumar, S.; Blanchet, G. B.; Hybertsen, M. S.; Murthy, J. Y.; Alam, M. A. Performance of carbon nanotube-dispersed thin-film transistors. Appl. Phys. Lett. 2006, 89, 143501.

    Google Scholar 

  14. Datta S. Quantum Transport: Atom to Transistor, 2nd ed.; Cambridge University Press: Cambridge, 2005.

    MATH  Google Scholar 

  15. Stauffer, D.; Aharony, A. Introduction to Percolation Theory; Taylor and Francis: London, 1992.

    Google Scholar 

  16. Haddon, R. C.; Sippel, J.; Rinzler, A. G.; Papadimitrakopoulos, F. Purification and separation of carbon nanotubes. MRS Bull. 2004, 29, 252–259.

    CAS  Google Scholar 

  17. Wang, C.; Cao, Q.; Ozel, T.; Gaur, A.; Rogers, J. A.; Shim, M. Electronically selective chemical functionalization of carbon nanotubes: Correlation between Raman spectral and electrical responses. J. Am. Chem. Soc. 2005, 127, 11460–11468.

    Article  CAS  PubMed  Google Scholar 

  18. Arnold, M. S.; Stupp, S. I.; Hersam, M. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 2005, 5, 713–718.

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Seidel, R.; Graham, A. P.; Unger, E.; Duesberg, G. S.; Liebau, M.; Steinhoegl, W.; Kreupl, F.; Hoenlein, W. Highcurrent nanotube transistors. Nano Lett. 2004, 4, 831–834.

    Article  CAS  ADS  Google Scholar 

  20. Pimparkar, N.; Guo, J.; Alam, M. A. Performance assessment of subpercolating nanobundle network thinfilm transistors by an analytical model. IEEE T. Electron Dev. 2007, 54, 637–644.

    Article  ADS  Google Scholar 

  21. Li, Y. M.; Mann, D.; Rolandi, M.; Kim, W.; Ural, A.; Hung, S.; Javey, A.; Cao, J.; Wang, D. W.; Yenilmez, E.; Wang, Q.; Gibbons, J. F.; Nishi, Y.; Dai, H. J. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett. 2004, 4, 317–321.

    Article  CAS  ADS  Google Scholar 

  22. Pimparkar, N.; Kumar, S.; Cao, Q.; Rogers, J. A.; Murthy, J. Y.; Alam, M. A. Current-voltage characteristics of long-channel nanobundle thin-film transistors: A “bottomup” perspective. IEEE Electron Dev. L. 2007, 28, 157–160

    Article  CAS  ADS  Google Scholar 

  23. Pimparkar N.; Kocabas C.; Kang S. J.; Rogers J. A.; Alam M. A. Electron Dev. Lett. 2007, 28, 593–595.

    Article  CAS  ADS  Google Scholar 

  24. Kocabas, C.; Pimparkar, N.; Yesilyurt, O.; Alam, M. A.; Rogers, J. A. Experimental and theoretical studies of transport through large scale, partially aligned arrays of single-walled carbon nanotubes in thin film type transistors. Nano Lett. 2007, 7, 1195–1202.

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Seager, C. H.; Pike, G. E. Percolation and conductivity: A computer study. Phys. Rev. B 1974, 10, 1421.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John A. Rogers or Muhammad A. Alam.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Pimparkar, N., Cao, Q., Rogers, J.A. et al. Theory and practice of “Striping” for improved ON/OFF Ratio in carbon nanonet thin film transistors. Nano Res. 2, 167–175 (2009). https://doi.org/10.1007/s12274-009-9013-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-009-9013-z

Keywords

  • Nanonet
  • Carbon nanotube
  • flexible electronics
  • thin film transistors