Nano Research

, Volume 2, Issue 1, pp 69–77 | Cite as

Isolation of single-walled carbon nanotube enantiomers by density differentiation

  • Alexander A. Green
  • Matthew C. Duch
  • Mark C. Hersam
Open Access
Research Article

Abstract

Current methods of synthesizing single-walled carbon nanotubes (SWNTs) result in racemic mixtures that have impeded the study of left- and right-handed SWNTs. Here we present a method of isolating different SWNT enantiomers using density gradient ultracentrifugation. Enantiomer separation is enabled by the chiral surfactant sodium cholate, which discriminates between left- and right-handed SWNTs and thus induces subtle differences in their buoyant densities. This sorting strategy can be employed for simultaneous enrichment by handedness and roll-up vector of SWNTs having diameters ranging from 0.7 to 1.5 nm. In addition, circular dichroism of enantiomer refined samples enables identification of high-energy optical transitions in SWNTs.

Keywords

Carbon nanotube separation handedness enantiomer optical activity chirality 

Supplementary material

12274_2009_9006_MOESM1_ESM.pdf (290 kb)
Supplementary material, approximately 292 KB.

References

  1. [1]
    Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Yu, M. F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, 637–640.CrossRefPubMedADSGoogle Scholar
  3. [3]
    Hu, J. T.; Odom, T. W.; Lieber, C. M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 1999, 32, 435–445.CrossRefGoogle Scholar
  4. [4]
    Hersam, M. C. Progress towards monodisperse single-walled carbon nanotubes. Nature Nanotech. 2008, 3, 387–394.CrossRefADSGoogle Scholar
  5. [5]
    Krupke, R.; Hennrich, F.; von Lohneysen, H.; Kappes, M. M. Separation of metallic from semiconducting single-walled carbon nanotubes. Science 2003, 301, 344–347.CrossRefPubMedADSGoogle Scholar
  6. [6]
    Zheng, M.; Jagota, A.; Strano, M. S.; Santos, A. P.; Barone, P.; Chou, S. G.; Diner, B. A.; Dresselhaus, M. S.; McLean, R. S.; Onoa, G. B.; Samsonidze, G. G.; Semke, E. D.; Usrey, M.; Walls, D. J. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 2003, 302, 1545–1548.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Chattopadhyay, D.; Galeska, L.; Papadimitrakopoulos, F. A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes. J. Am. Chem. Soc. 2003, 125, 3370–3375.CrossRefPubMedGoogle Scholar
  8. [8]
    Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotech. 2006, 1, 60–65.CrossRefADSGoogle Scholar
  9. [9]
    Nish, A.; Hwang, J. Y.; Doig, J.; Nicholas, R. J. Highly selective dispersion of singlewalled carbon nanotubes using aromatic polymers. Nature Nanotech. 2007, 2, 640–646.CrossRefADSGoogle Scholar
  10. [10]
    Samsonidze, G. G.; Gruneis, A.; Saito, R.; Jorio, A.; Souza, A. G.; Dresselhaus, G.; Dresselhaus, M. S. Interband optical transitions in left- and right-handed single-wall carbon nanotubes. Phys. Rev. B 2004, 69, 205402.Google Scholar
  11. [11]
    Tasaki, S.; Maekawa, K.; Yamabe, T. π-band contribution to the optical properties of carbon nanotubes: Effects of chirality. Phys. Rev. B 1998, 57, 9301–9318.CrossRefADSGoogle Scholar
  12. [12]
    Vardanega, D.; Picaud, F.; Girardet, C. Chiral response of single walled carbon nanotube-based sensors to adsorption of amino acids: A theoretical model. J. Chem. Phys. 2007, 127, 194702.Google Scholar
  13. [13]
    Strano, M. S. Carbon nanotubes—Sorting out left from right. Nature Nanotech. 2007, 2, 340–341.CrossRefADSGoogle Scholar
  14. [14]
    Ivchenko, E. L.; Spivak, B. Chirality effects in carbon nanotubes. Phys. Rev. B 2002, 66, 155404.Google Scholar
  15. [15]
    Peng, X.; Komatsu, N.; Bhattacharya, S.; Shimawaki, T.; Aonuma, S.; Kimura, T.; Osuka, A. Optically active single-walled carbon nanotubes. Nature Nanotech. 2007, 2, 361–365.CrossRefADSGoogle Scholar
  16. [16]
    Peng, X. B.; Komatsu, N.; Kimura, T.; Osuka, A. Improved optical enrichment of SWNTs through extraction with chiral nanotweezers of 2,6-pyridylene-bridged diporphyrins. J. Am. Chem. Soc. 2007, 129, 15947–15953.CrossRefPubMedGoogle Scholar
  17. [17]
    Peng, X.; Komatsu, N.; Kimura, T.; Osuka, A. Simultaneous enrichments of optical purity and (n,m) abundance of SWNTs through extraction with 3,6-carbazolylene-bridged chiral diporphyrin nanotweezers. ACS Nano 2008, 2, 2045–2050.CrossRefPubMedGoogle Scholar
  18. [18]
    Green, A. A.; Hersam, M. C. Ultracentrifugation of single-walled nanotubes. Mater. Today 2007, 10, 59–60.CrossRefGoogle Scholar
  19. [19]
    Arnold, M. S.; Stupp, S. I.; Hersam, M. C. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 2005, 5, 713–718.CrossRefPubMedADSGoogle Scholar
  20. [20]
    Green, A. A.; Hersam, M. C. Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes. Nano Lett. 2008, 8, 1417–1422.CrossRefPubMedADSGoogle Scholar
  21. [21]
    Green, A. A.; Hersam, M. C. Processing and properties of highly enriched double-walled carbon nanotubes. Nature Nanotech., in press 2009. (DOI:10.1038/nnano.2008.364).Google Scholar
  22. [22]
    Sun, X.; Zaric, S.; Daranciang, D.; Welsher, K.; Lu, Y.; Li, X.; Dai, H. Optical properties of ultrashort semiconducting single-walled carbon nanotube capsules down to sub-10 nm. J. Am. Chem. Soc. 2008, 130, 6551–6555.CrossRefPubMedGoogle Scholar
  23. [23]
    Fagan, J. A.; Becker, M. L.; Chun, J.; Hobbie, E. K. Length fractionation of carbon nanotubes using centrifugation. Adv. Mater. 2008, 20, 1609–1614.CrossRefGoogle Scholar
  24. [24]
    Mukhopadhyay, S.; Maitra, U. Chemistry and biology of bile acids. Curr. Sci. 2004, 87, 1666–1683.Google Scholar
  25. [25]
    Arnold, M. S.; Suntivich, J.; Stupp, S. I.; Hersam, M. C. Hydrodynamic characterization of surfactant encapsulated carbon nanotubes using an analytical ultracentrifuge. ACS Nano 2008, 2, 2291–2300.CrossRefPubMedGoogle Scholar
  26. [26]
    Miyauchi, Y.; Oba, M.; Maruyama, S. Cross-polarized optical absorption of single-walled nanotubes by polarized photoluminescence excitation spectroscopy. Phys. Rev. B 2006, 74, 205440Google Scholar
  27. [27]
    Chuang, K. C.; Nish, A.; Hwang, J. Y.; Evans, G. W.; Nicholas, R. J. Experimental study of Coulomb corrections and single-particle energies for single-walled carbon nanotubes using cross-polarized photoluminescence. Phys. Rev. B 2008, 78, 085411.Google Scholar
  28. [28]
    Lefebvre, J.; Finnie, P. Polarized photoluminescence excitation spectroscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 2007, 98, 167406.Google Scholar
  29. [29]
    Kilina, S.; Tretiak, S.; Doorn, S. K.; Luo, Z.; Papadimitrakopoulos, F.; Piryatinski, A.; Saxena, A.; Bishop, A. R. Cross-polarized excitons in carbon nanotubes. P. Natl. Acad. Sci. USA 2008, 105, 6797–6802.CrossRefADSGoogle Scholar
  30. [30]
    Cross, L. C.; Klyne, W. Report from IUPAC commission on nomenclature of organic chemistry Rules for nomenclature of organic chemistry. Section E: Stereochemistry (recommendations 1974). Pure Appl. Chem. 1976, 45, 13–30.Google Scholar
  31. [31]
    Dukovic, G.; Balaz, M.; Doak, P.; Berova, N. D.; Zheng, M.; McLean, R. S.; Brus, L. E. Racemic single-walled carbon nanotubes exhibit circular dichroism when wrapped with DNA. J. Am. Chem. Soc. 2006, 128, 9004–9005.CrossRefPubMedGoogle Scholar
  32. [32]
    Haroz, E. H.; Bachilo, S. M.; Weisman, R. B.; Doorn, S. K. Curvature effects on the E 33 and E 44 exciton transitions in semiconducting single-walled carbon nanotubes. Phys. Rev. B 2008, 77, 125405.Google Scholar
  33. [33]
    Jorio, A.; Santos, A. P.; Ribeiro, H. B.; Fantini, C.; Souza, M.; Vieira, J. P. M.; Furtado, C. A.; Jiang, J.; Saito, R.; Balzano, L.; Resasco, D. E.; Pimenta, M. A. Quantifying carbon-nanotube species with resonance Raman scattering. Phys. Rev. B 2005, 72, 075207.Google Scholar
  34. [34]
    Gruneis, A.; Saito, R.; Jiang, J.; Samsonidze, G. G.; Pimenta, M. A.; Jorio, A.; Souza, A. G.; Dresselhaus, G.; Dresselhaus, M. S. Resonant Raman spectra of carbon nanotube bundles observed by perpendicularly polarized light. Chem. Phys. Lett. 2004, 387, 301–306.CrossRefADSGoogle Scholar
  35. [35]
    Uryu, S.; Ando, T. Exciton absorption of perpendicularly polarized light in carbon nanotubes. Phys. Rev. B 2006, 74, 155–411.CrossRefGoogle Scholar
  36. [36]
    Zhao, H. B.; Mazumdar, S. Electron-electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes. Phys. Rev. Lett. 2004, 93, 157–402.Google Scholar
  37. [37]
    Weisman, R. B.; Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot. Nano Lett. 2003, 3, 1235–1238.CrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Alexander A. Green
    • 1
  • Matthew C. Duch
    • 1
  • Mark C. Hersam
    • 1
  1. 1.Department of Materials Science and Engineering and Department of ChemistryNorthwestern UniversityEvanstonUSA

Personalised recommendations