Nano Research

, Volume 2, Issue 1, pp 47–53 | Cite as

Surface exciton-plasmon polariton enhanced light emission via integration of single semiconductor nanowires with metal nanostructures

  • Xuejin Zhang
  • Pengwei Wang
  • Xinzheng Zhang
  • Jun Xu
  • Yongyuan ZhuEmail author
  • Dapeng YuEmail author
Open Access
Research Article


The light emission enhancement behavior from single ZnO nanowires integrated with metallic contacts is investigated by micro-photoluminescence measurements. Apart from surface plasmon polaritons at the air/metal interface, the emission of a single ZnO nanowire can be coupled into guided modes of surface excitonplasmon polaritons (SEPPs). The out-coupling avenues of SEPP guided modes are modeled in the presence of nanostructures, such as corrugation and gratings, on the metal surface. The guided modes of SEPPs in metalcontacted ZnO nanowires are calculated using the effective index method. The enhanced light emission from single semiconductor nanowires shows promise for use in highly efficient nano-emitters and nano-lasers, as well as macroscopic solid state light sources with very high efficiency.


Semiconductor nanowires surface plasmon polaritons nanowire waveguides emission enhancement gratings 


  1. [1]
    García-Vidal, F. J.; Pendry, J. B. Collective theory for surface enhanced Raman scattering. Phys. Rev. Lett. 1996, 77, 1163–1166.CrossRefPubMedADSGoogle Scholar
  2. [2]
    Ebbesen, T. W.; Lezec, L. J.; Chaemi, H. F.; Thio, T.; Wolff, P. A. Extraordinary optical transmission through subwavelength hole arrays. Nature 1998, 391, 667–669.CrossRefADSGoogle Scholar
  3. [3]
    Fang, N.; Lee, H.; Sun, C.; Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 2005, 308, 534–537.CrossRefPubMedADSGoogle Scholar
  4. [4]
    Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830.CrossRefPubMedADSGoogle Scholar
  5. [5]
    Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 1946, 69, 681.CrossRefGoogle Scholar
  6. [6]
    Diana, F. S.; David, A.; Meinel, I.; Sharma, R.; Weisbuch, C.; Nakamura, S.; Petroff, P. M. Photonic crystal-assisted light extraction from a colloidal quantum dot / GaN hybrid structure. Nano Lett. 2006, 6, 1116–1120.CrossRefPubMedADSGoogle Scholar
  7. [7]
    Okamoto, K.; Niki, I.; Shvartser, A.; Narukawa, Y.; Mukai, T.; Scherer, A. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat. Mater. 2004, 3, 601–605.CrossRefPubMedADSGoogle Scholar
  8. [8]
    Neogi, A.; Lee, C. -W.; Everitt, H. O.; Kuroda, T.; Tackeuchi, A.; Yablonovitch, E. Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling. Phys. Rev. B 2002, 66, 153305.Google Scholar
  9. [9]
    Gontijo, I.; Boroditsky, M.; Yablonovitch, E.; Keller, S.; Mishra, U. K.; DenBaars, S. P. Coupling of InGaN quantum-well photoluminescence to silver surface plasmons. Phys. Rev. B 1999, 60, 11564–11567.CrossRefADSGoogle Scholar
  10. [10]
    Okamoto, K.; Niki, I.; Scherer, A.; Narukawa, Y.; Mukai, T.; Kawakami, Y. Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy. Appl. Phys. Lett. 2005, 87, 071102.Google Scholar
  11. [11]
    Wang, J.; Gudiksen, M. S.; Duan, X.; Cui, Y.; Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 2004, 293, 1455–1457.CrossRefADSGoogle Scholar
  12. [12]
    Duan, X.; Huang, Y.; Agarwal, R.; Lieber, C. M. Single-nanowire electrically driven lasers. Nature 2003, 421, 241–245.CrossRefPubMedADSGoogle Scholar
  13. [13]
    Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.CrossRefADSGoogle Scholar
  14. [14]
    Zhang, J.; Ye, Y. -H.; Wang, X.; Rochon, P.; Xiao, M. Coupling between semiconductor quantum dots and two-dimensional surface plasmons. Phys. Rev. B 2005, 72, 201306.Google Scholar
  15. [15]
    Zhang, X. J.; Wu, D. M.; Sun, C.; Zhang, X. Artificial phonon-plasmon polariton at the interface of piezoelectric metamaterials and semiconductors. Phys. Rev. B 2007, 76, 085318.Google Scholar
  16. [16]
    Yoshikawa, H.; Adachi, S. Optical constants of ZnO. Jpn. J. Appl. Phys. 1997, 36, 6237–6243.CrossRefADSGoogle Scholar
  17. [17]
    Palik, E. D. Handbook of Optical Constants of Solids; Academic Press: Orlando, 1985.Google Scholar
  18. [18]
    Marcuse, D. Theory of Dielectric Optical Waveguides; Academic Press: San Diego, 1991.Google Scholar
  19. [19]
    Karalis, A.; Lidorikis, E.; Ibanescu, M.; Joannopoulos, J. D.; Soljačići, M. Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air. Phys. Rev. Lett. 2005, 95, 063901.Google Scholar
  20. [20]
    Dionne, J. A.; Sweatlock, L. A.; Atwater, H. A.; Polman, A. Planar metal plasmon waveguides: Frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys. Rev. B 2005, 72, 075405.Google Scholar
  21. [21]
    Cavallini, A.; Polenta, L.; Rossi, M.; Stoica, T.; Calarco, R.; Meijers, R. J.; Richter, T.; Lüth, H. Franz Keldysh effect in GaN nanowires. Nano Lett. 2007, 7, 2166–2170.CrossRefADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.State Key Laboratory for Mesoscopic Physics, and Electron Microscopy Laboratory, Department of PhysicsPeking UniversityBeijingChina
  2. 2.National Laboratory of Solid State MicrostructuresNanjing UniversityNanjingChina

Personalised recommendations