Nanotrains and self-assembled two-dimensional arrays built from carboranes linked by hydrogen bonding of dipyridones


The strong hydrogen bonding ability of 2-pyridones were exploited to build nanotrains on surfaces. Carborane wheels on axles difunctionalized with 2-pyridone hydrogen bonding units were synthesized and displayed spontaneous formation of linear nanotrains by self-assembly on SiO2 or mica surfaces. Imaging using atomic force microscopy confirmed linear formations with lengths up to 5 µm and heights within the range of the molecular height of the carborance-tipped axles.


  1. [1]

    Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 1991, 254, 1312–1319.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. [2]

    Lindsey, J. S. Self-assembly in synthetic routes to molecular devices. Biological principles and chemical perspectives: A review. New J. Chem. 1991, 15, 153–180.

    CAS  Google Scholar 

  3. [3]

    Philp, D.; Stoddart, J. F. Self-assembly in natural and unnatural systems. Angew. Chem. Int. Ed. Engl. 1996, 35, 1154–1196.

    Article  Google Scholar 

  4. [4]

    Bong, D. T.; Clark, T. D.; Granja, J. R.; Ghadiri, M. R. Self-assembling organic nanotubes. Angew. Chem., Int. Ed. 2001, 40, 988–1011.

    Article  CAS  Google Scholar 

  5. [5]

    Miao, Q.; Lefenfeld, M.; Nguyen, T.-Q.; Siegrist, T.; Kloc, C.; Nuckolls, C. Self-assembly and electronics of dipolar linear acenes. Adv. Mater. 2005, 17, 407–412.

    Article  CAS  Google Scholar 

  6. [6]

    Yip, H,-L.; Ma, H.; Jen, A. K.-Y.; Dong, J.; Parviz, B. A. Two-dimensional self-assembly of 1-pyrylphosphonic acid: Transfer of stacks on structured surface. J. Am. Chem. Soc. 2006, 128, 5672–5679.

    Article  CAS  PubMed  Google Scholar 

  7. [7]

    Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Jamssen, R. A. J.; Meijer, E. W.; Herwig, P., et. al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 1999, 401, 685–688.

    Article  CAS  ADS  Google Scholar 

  8. [8]

    van de Craats, A. M.; Stutzmann, N.; Bunk, O.; Nielsen, M. M.; Watson, M.; Müllen, K.; Chanzy, H. D.; Sirringhaus, H.; Friend, R. H. Meso-epitaxial solutiongrowth of self-organizing discotic liquid-crystalline semiconductors. Adv. Mater. 2003, 15, 495–499.

    Article  Google Scholar 

  9. [9]

    Faccheti, A.; Mushrush, M.; Yoon, M. H.; Hutchison, G. R.; Ratner, M. A.; Marks, T. J. Building blocks for n-type molecular and polymeric electronics. Perfluoroalkylversus alkyl-functionalized oligothiophenes (nT; n = 2–6) Systematics of thin film microstructure, semiconductor performance, and modeling of majority charge injection in field-effect transistors. J. Am. Chem. Soc. 2004, 126, 13859–13874.

    Article  Google Scholar 

  10. [10]

    Wu, Y.; Li, Y.; Gardner, S.; Ong, B. S. Indolo[3,2-b]carbazole-based thin-film transistors with high mobility and stability. J. Am. Chem. Soc. 2005, 127, 614–618.

    Article  CAS  PubMed  Google Scholar 

  11. [11]

    Kautz, H.; van Beek, D. J. M.; Sijbesma, R. P.; Meijer, E. W. Cooperative end-to-end and lateral hydrogen-bonding motifs in supramolecular thermoplastic elastomers. Macromolecules 2006, 39, 4265–4267.

    Article  CAS  ADS  Google Scholar 

  12. [12]

    Schmidt-Mende, L.; Fehtenkotter A.; Müllen, K.; Moons, E.; Friend, R. H.; Mackenzie, J. D. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 2001, 293, 1119–1122.

    Article  CAS  PubMed  ADS  Google Scholar 

  13. [13]

    Yang, X. N.; van Duren, J. K. J.; Rispens, M. T.; Hummelen, J. C.; Janssen, R. A. J.; Michels, M. A. J.; Loos, J. Crystalline organization of a methanofullerene as used for plastic solar-cell applications. Adv. Mater. 2004, 16, 802–806.

    Article  CAS  Google Scholar 

  14. [14]

    Koert, U.; Harding, M. M.; Lehn, J. M. DNH deoxyribonucleohelicates: Self assembly of oligonucleosidic doublehelical metal complexes. Nature 1990, 346, 339–342.

    Article  CAS  PubMed  ADS  Google Scholar 

  15. [15]

    Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity. Science 1999, 284, 785–788.

    Article  CAS  PubMed  ADS  Google Scholar 

  16. [16]

    Hirschberg, J. H. K. K.; Brunsverld, L.; Ramzi, A.; Vekemans, J. A. J. M.; Sijbesma, R. P.; Meijer, E. W. Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. Nature 2000, 407, 167–170.

    Article  CAS  PubMed  ADS  Google Scholar 

  17. [17]

    Percec, V.; Glodde, M.; Bera, T. K.; Miura, Y.; Shiyanovskaya, I.; Singer, K. D.; Balagurusamy, V. S. L.; Heiney, P. A.; Schnell, I.; Rapp, A., et al. Self-organization of supramolecular helical dendrimers into complex electronic materials. Nature 2002, 419, 384–387.

    Article  CAS  PubMed  ADS  Google Scholar 

  18. [18]

    Yamamoto, T.; Fukushima, T.; Yamamoto, Y.; Kosaka, A.; Jin, W.; Ishii, N.; Aida, T. Stabilization of a kinetically favored nanostructure: Surface ROMP of self-assembled conductive nanocoils from a norbornene-appended hexa-peri-hexabenzocoronene. J. Am. Chem. Soc. 2006, 128, 14337–14340.

    Article  CAS  PubMed  Google Scholar 

  19. [19]

    Jonkheijm, P.; Miura, A.; Zdanowska, M.; Hoeben, F. J. M.; Feyter, S. D.; Schenning, A. P. H. J.; de Schryver, F. C.; Meijer, E. W. π-Conjugated oligo-(ρ-phenylenevinylene) rosettes and their tubular self-assembly. Angew. Chem. Int. Ed. 2004, 43, 74–78.

    Article  Google Scholar 

  20. [20]

    Ghadiri, M. R.; Granja, J. R.; Milligan, R. A.; McRee, D. E.; Khazanovich, N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature, 1993, 366, 324–327.

    Article  CAS  PubMed  ADS  Google Scholar 

  21. [21]

    Yan, D. Y.; Zhou, Y. F.; Hou, J. Supramolecular self-assembly of macroscopic tubes. Science 2004, 303, 65–67.

    Article  CAS  PubMed  ADS  Google Scholar 

  22. [22]

    Baxter, P. N. W.; Lehn, J. M.; Fischer, J.; Youinou, M. Self-assembly and structure of a 3 × 3 inorganic grid from nine silver ions and six ligand components. Angew. Chem. Int. Ed. Engl. 1994, 33, 2284–2287.

    Article  Google Scholar 

  23. [23]

    Weissbuch, I.; Baxter, P. N. W.; Cohen, S.; Cohen, H.; Kjaer, K.; Howes, P. B.; Als-Nielsen J.; Hanan, G. S.; Schubert, U. S.; Lehn, J, M., et al. Self-assembly at the air-water interface: In-situ preparation of thin films of metal ion grid architectures. J. Am. Chem. Soc. 1998, 120, 4850–4860.

    Article  CAS  Google Scholar 

  24. [24]

    Ruben, M.; Rojo, J.; Romero-Saluguero, F. J.; Uppadine, L. H.; Lehn, J. M. Grid-type metal ion architectures: Functional metallosupramolecular arrays. Angew. Chem., Int. Ed. 2004, 43, 3644–3662.

    Article  CAS  Google Scholar 

  25. [25]

    Zerowski, J. A.; Whitesides, G. M. Steric control of secondary, solid-state architecture in 1:1 complexes of melamines and barbiturates that crystallize as crinkled tapes. J. Am. Chem. Soc. 1994, 116, 4298–4304.

    Article  Google Scholar 

  26. [26]

    Ranganathan, A.; Pedireddi, V. R.; Rao, C. N. R. Hydrothermal synthesis of organic channel structures: 1:1 hydrogen-bonded adducts of melamine with cyanuric and trithiocyanuric acids. J. Am. Chem. Soc. 1999, 121, 1752–1753.

    Article  CAS  Google Scholar 

  27. [27]

    Prins, L. J.; de Jong, F.; Timmerman, P.; Reinhoudt, D. N. An enantiomerically pure hydrogen-bonded assembly. Nature 2000, 408, 181–184.

    Article  CAS  PubMed  ADS  Google Scholar 

  28. [28]

    Whitesides, G. M.; Simanek, E. E.; Mathias, J. P.; Seto, C. T.; Chin, D. N.; Mammen, M.; Gordon, D. M. Noncovalent synthesis: Using physical-organic chemistry to make aggregates. Acc. Chem. Res. 1995, 28, 37–44.

    Article  CAS  Google Scholar 

  29. [29]

    Highfill, M. L.; Chandrasekaran, A.; Lynch, D. E.; Hamilton, D. A. Superstructural variety from an alkylated triazine: Formation of one-dimensional hydrogen-bonded arrays or cyclic rosettes. Cryst. Growth Des. 2002, 2, 15–20.

    Article  CAS  Google Scholar 

  30. [30]

    Kolotuchin, S. V.; Zimmerman, S. C. Self-assembly mediated by the donor-donor-acceptor·acceptoracceptor-donor (DDA·AAD) hydrogen-bonding motif: Formation of a robust hexameric aggregate. J. Am. Chem. Soc. 1998, 120, 9092–9093.

    Article  CAS  Google Scholar 

  31. [31]

    Marsh, A.; Silvestri, M.; Lehn, J. M. Self-complementary hydrogen bonding heterocycles designed for the enforced self-assembly into supramolecular macrocycles. Chem. Commun. 1996, 1527–1528.

  32. [32]

    Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: Oxford, 1997.

    Google Scholar 

  33. [33]

    Atwood, J. L.; Davies, J. E. D.; MacNicol, D. D.; Vögtle, F.; Lehn, J.-M. Comprehensive Supramolecular Chemistry; Pergamon: New York, 1996.

    Google Scholar 

  34. [34]

    Simard, M.; Su, D.; Wuest, J. D. Use of hydrogen bonds to control molecular aggregation. Self-assembly of threedimensional networks with large chambers. J. Am. Chem. Soc. 1991, 113, 4696–4698.

    Article  CAS  Google Scholar 

  35. [35]

    Edwards, M. R.; Jones, W.; Motherwell, W. D. S. Influence of dicarboxylic acid structure on tape networks in cocrystals of 2-pyridone. Cryst. Eng. 2002, 5, 25–36.

    Article  CAS  Google Scholar 

  36. [36]

    Ducharme, Y.; Wuest, J. D. Use of hydrogen bonds to control molecular aggregation: Extensive, selfcomplementary arrays of donors and acceptors. J. Org. Chem. 1988, 53, 5787–5789.

    Article  CAS  Google Scholar 

  37. [37]

    Gallant, M.; Viet, M. T. P.; Wuest, J. D. Use of hydrogen bonds to control molecular aggregation: Association of dipyridones joined by flexible spacers. J. Org. Chem. 1991, 56, 2284–2286.

    Article  CAS  Google Scholar 

  38. [38]

    Heinz, R.; Rabe, J. P.; Meister, W.-V.; Hoffmann, S. Structure and dynamics of two-dimensional adlayers of a 2-pyridone smectogen studied by STM. Thin Solid Films 1995, 264, 246–249.

    Article  CAS  ADS  Google Scholar 

  39. [39]

    Thwaite, S.; Schier, A.; Schmidbaur, H. The auration of 2-hydroxy-pyridine (2-pyridone): Preparative and structural studies and a comparison with reactions of related aliphatic O,N-donors. Inorg. Chim. Acta. 2004, 357, 1549–1557.

    Article  CAS  Google Scholar 

  40. [40]

    Miyabayashi, T.; Hara, T.; Yamagata, T.; Mashima, K. Chlorido(6-diphenylphosphino-2-pyridonato-k2P,N)(6-diphenylphosphino-2-hydroxypyridine-k2P,N)hydrido iridium(III) chloroform 1.896-solvate. Acta Crystallogr. E 2007, 63, m576–m578.

    Article  Google Scholar 

  41. [41]

    Nichol, G. S.; Clegg, W. Complexes of 6-methyl-2-pyridone with the alkaline earth metals magnesium, strontium and barium: Synthesis and structural characterisation. Inorg. Chim. Acta 2006, 359, 3474–3480.

    Article  CAS  Google Scholar 

  42. [42]

    Murugavel, R.; Kuppuswamy, S.; Boomishankar, R.; Steiner, A. Hierarchical structures built from a molecular zinc phosphate core. Angew. Chem. Int. Ed. 2006, 45, 5536–5540.

    Article  CAS  Google Scholar 

  43. [43]

    Chuchuryukin, A. V.; Chase, P. A.; Mills, A. M.; Lutz, M.; Spek, A. L.; van Klink, G. P. M.; van Koten, G. Hydroxyand mercaptopyridine pincer platinum and palladium complexes generated by silver-free halide abstraction. Inorg. Chem. 2006, 5, 2045–2054.

    Article  Google Scholar 

  44. [44]

    Barth, J. V.; Constantini, G.; Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 2005, 437, 671–679.

    Article  CAS  PubMed  ADS  Google Scholar 

  45. [45]

    Barth, J. V.; Weckesser, J.; Cai, C.; Günter, P.; Bürgi, L.; Jeandupeux O.; Kern, K. Building supramolecular nanostructures at surfaces by hydrogen bonding. Angew. Chem. Int. Ed. 2000, 39, 1230–1234.

    Article  CAS  Google Scholar 

  46. [46]

    West, P.; Ross. A. An Introduction to Atomic Force Microscopy Modes. Pacific Nanotoechnology, Inc. (accessed 2006)

  47. [47]

    Takamatsu, D.; Yamakoshi, Y.; Fukui, K. Control of probe function in noncontact atomic force microscopy using photo-responsive molecular tip. Surf. Sci. Nanotech. 2006, 4, 249–253.

    Article  CAS  Google Scholar 

  48. [48]

    Marcus, R. B.; Ravi, T. S.; Gmitter, T.; Chin, K.; Orvis, W. J.; Ciarlo, D. R.; Hunt, C. E.; Trujillo, J. Formation of silicon tips with <1 nm radius. Appl. Phys. Lett. 1990, 56, 236–238.

    Article  CAS  ADS  Google Scholar 

  49. [49]

    HI-RES tips with tip radius of ∼1 nm are commercially available from MikroMasch, Inc., (accessed 21 October, 2008)

  50. [50]

    Shirai, Y.; Osgood, A. J.; Zhao, Y.; Kelly, K. F.; Tour, J. M. Directional control in thermally driven single-molecule nanocars. Nano Lett. 2005, 5, 2330 2334.

    Article  PubMed  Google Scholar 

  51. [51]

    Shirai, Y.; Osgood, A. J.; Zhao, Y.; Yao, Y.; Saudan, L.; Yang, H.; Yu-Hung, C.; Sasaki, T.; Morin, J.-F.; Guerrero, J. M.; Kelly, K. F.; Tour, J. M. Surface-rolling molecules. J. Am. Chem. Soc. 2006, 128, 4854–4864.

    Article  CAS  PubMed  Google Scholar 

  52. [52]

    Shirai Y.; Morin, J.-F.; Sasaki, T.; Guerrero, J. M.; Tour, J. M. Recent progress on nanovehicles. Chem. Soc. Rev. 2006, 35, 1043–1055.

    Article  CAS  PubMed  Google Scholar 

  53. [53]

    Morin, J.-F.; Shirai, Y.; Tour, J. M. En route to a motorized nanocar. Org. Lett. 2006, 8, 1713–1716.

    Article  CAS  PubMed  Google Scholar 

  54. [54]

    Sasaki, T.; Tour, J. M. Synthesis of a dipolar nanocar. Tetrahedron Lett. 2007, 48, 5821–5824.

    Article  CAS  Google Scholar 

  55. [55]

    Sasaki, T.; Morin, J.-F.; Lu, M.; Tour, J. M. Synthesis of a single-molecule nanotruck. Tetrahedron Lett. 2007, 48, 5817–5820.

    Article  CAS  Google Scholar 

  56. [56]

    Morin, J.-F.; Sasaki, T.; Shirai. Y.; Guerrero J. M.; Tour, J. M. Synthetic routes toward carborane-wheeled nanocars. J. Org. Chem. 2007, 72, 9481–9490.

    Article  CAS  PubMed  Google Scholar 

  57. [57]

    Sasaki, T, Osgood, A. J.; Alemany, L. B.; Kelly, K. F.; Tour, J. M. Synthesis of a nanocar with an angled chassis: Towards circling movement. Org. Lett. 2008, 10, 229–232.

    Article  CAS  PubMed  Google Scholar 

  58. [58]

    Sasaki, T.; Tour, J. M. Synthesis of a new photoactive nanovehicle: Nanoworm. Org. Lett. 2008, 10, 897–900.

    Article  CAS  PubMed  Google Scholar 

  59. [59]

    Sasaki, T.; Osgood, A. J.; Kiappes, J. L. Kelly, K. F.; Tour, J. M. Synthesis of a porphyrin-fullerene pinwheel. Org. Lett. 2008, 10, 1377–1380.

    Article  CAS  PubMed  Google Scholar 

  60. [60]

    Sasaki, T.; Guerrero J. M.; Tour, J. M. The assembly line: Self-assembling nanocars. Tetrahedron 2008, 64, 8522–8529.

    Article  CAS  Google Scholar 

  61. [61]

    Morgan, D. A.; Sloan, J.; Green, M. L. H. Direct imaging of o-carborane molecules within single walled carbon nanotubes. Chem. Commun. 2002, 2442–2443.

  62. [62]

    Bodwell, G. J.; Miller, D. O.; Vermeij, R. J. Nonplanar aromatic compounds 6. [2]Paracyclo[2](2,7)pyrenophane. A novel strained cyclophane and a first step on the road to a “Vögtle” belt. Org. Lett. 2001, 3, 2093–2096.

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to James M. Tour.

Additional information

This article is published with open access at

Electronic supplementary material

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Sasaki, T., Guerrero, J.M., Leonard, A.D. et al. Nanotrains and self-assembled two-dimensional arrays built from carboranes linked by hydrogen bonding of dipyridones. Nano Res. 1, 412–419 (2008).

Download citation


  • Nanovehicles
  • nanotrains
  • 2-pyridone
  • hydrogen bonding
  • self-assembly