Nano Research

, Volume 1, Issue 3, pp 185–194 | Cite as

A DNA-based approach to the carbon nanotube sorting problem

Open Access
Review Article


Carbon nanotube sorting, i.e., the separation of a mixture of tubes into different electronic types and further into species with a specific chirality, is a fascinating problem of both scientific and technological importance. It is one of those problems that are easy to describe but difficult to solve. Single-stranded DNA forms stable complexes with carbon nanotubes and disperses them effectively in water. A particular DNA sequence of alternating guanine (G) and thymine (T) nucleotides ((GT)n, with n = 10 to 45) self-assembles into an ordered supramolecular structure around an individual nanotube, in such a way that the electrostatic properties of the DNA-carbon nanotube hybrid depend on tube structure, enabling nanotube separation by anion-exchange chromatography. This review provides a summary of the separation of metallic and semiconducting tubes, and purification of single (n, m) tubes using the DNA-wrapping approach. We will present our current understanding of the DNA-carbon nanotube hybrid structure and separation mechanisms, and predict future developments of the DNA-based approach.


Carbon nanotube separation DNA-wrapped carbon nanotubes metallic and semiconducting tubes 


  1. [1]
    Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1999.Google Scholar
  2. [2]
    Bachilo, S. M.; Balzano, L.; Herrera, J. E.; Pompeo, F.; Resasco, D. E.; Weisman, R. B. Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 2003, 125, 11186–11187.CrossRefGoogle Scholar
  3. [3]
    Ciuparu, D.; Chen, Y; Lim, S; Haller, G. L.; Pfefferle, L. Uniform-diameter single-walled carbon nanotubes catalytically grown in cobalt-incorporated mcm-41. J. Phys. Chem. B 2004, 108, 503–507.CrossRefGoogle Scholar
  4. [4]
    Li, X.; Tu, X.; Zaric, S.; Welsher, K.; Seo, W. S.; Zhao, W.; Dai, H. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection. J. Am. Chem. Soc. 2007, 129, 15770–15771.CrossRefGoogle Scholar
  5. [5]
    Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; McLean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2003, 2, 338–342.CrossRefGoogle Scholar
  6. [6]
    Zheng, M.; Jagota, A.; Strano, M. S.; Santos, A. P.; Barone, P.; Chou, S. G.; Diner, B. A.; Dresselhaus, M. S.; McLean, R. S.; Onoa, G. B.; Samsonidze, G. G.; Semke, E. D.; Usrey, M.; Walls, D. J. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 2003, 302, 1545–1548.CrossRefGoogle Scholar
  7. [7]
    Zheng, M.; Semke, E. D. Enrichment of single chirality carbon nanotubes. J. Am. Chem. Soc. 2007, 129, 6084–6085.CrossRefGoogle Scholar
  8. [8]
    Chen, Z.; Du, X.; Du, M.; Rancken, C. D.; Cheng, H.; Rinzler, A. G. Bulk separative enrichment in metallic or semiconducting single-walled carbon nanotubes. Nano. Lett. 2003, 3, 1245–1249.CrossRefGoogle Scholar
  9. [9]
    Chattopadhyay, D.; Galeska, I.; Papadimitrakopoulos, F. A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes. J. Am. Chem. Soc. 2003, 125, 3370–3375.CrossRefGoogle Scholar
  10. [10]
    Krupke, R.; Hennrich, F.; Löhneysen, H. V.; Kappes, M. M. Separation of metallic from semiconducting singlewalled carbon nanotubes. Science 2003, 301, 344–347.CrossRefGoogle Scholar
  11. [11]
    Arnold, M. S.; Stupp, S. I.; Hersam, M. C. Enrichment of single-walled carbon nanotubes by diameter in density gradient. Nano Lett. 2005, 5, 713–718.CrossRefGoogle Scholar
  12. [12]
    Maeda, Y.; Kimura, S. I.; Kanda, M.; Hirashima, Y.; Hasegawa, T.; Wakahara, T.; Lian, Y.; Nakahodo, T.; Tsuchiya, T.; Akasaka, T.; et al. Large-scale separation of metallic and semiconducting single-walled carbon nanotubes. J. Am. Chem. Soc. 2005, 127, 10287–10290.CrossRefGoogle Scholar
  13. [13]
    Heller, D.A.; Mayrhofer, R. M.; Baik, S.; Grinkova, Y. V.; Usrey, M. L.; Strano, M. S. Concomitant length and diameter separation of single-walled carbon nanotubes. J. Am. Chem. Soc. 2004, 126, 14567–14573.CrossRefGoogle Scholar
  14. [14]
    Arnold, M.S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.CrossRefGoogle Scholar
  15. [15]
    Peng, H.; Alvarez, N. T.; Kittrell, C.; Hauge, R. H.; Schmidt, H. K. Dielectrophoresis field flow fractionation of single-walled carbon nanotubes. J. Am. Chem. Soc. 2006, 128, 8396–8397.CrossRefGoogle Scholar
  16. [16]
    Kim, W. J.; Usrey, M. L.; Strano, M. S. Selective functionalization and free solution electrophoresis of single-walled carbon nanotubes: Separate enrichment of metallic and semiconducting SWNT. Chem. Mater. 2007, 19, 1571–1576.CrossRefGoogle Scholar
  17. [17]
    Weisman, R. B. Four degrees of separation. Nat. Mater. 2003, 2, 569–570.CrossRefGoogle Scholar
  18. [18]
    Hersam, M. C. Progress towards monodisperse singlewalled carbon nanotubes. Nat. Nanotechnol. 2008, 3, 387–394.CrossRefGoogle Scholar
  19. [19]
    Huang, X.; McLean, R. S.; Zheng, M. High-resolution length sorting and purification of DNA-wrapped carbon nanotubes by size-exclusion chromatography. Anal. Chem. 2005, 77, 6225–6228.CrossRefGoogle Scholar
  20. [20]
    Tao, N. J.; Shi, Z. Monolayer guanine and adenine on graphite in NaCl solution: A comparative STM and AFM study. J. Phys. Chem. B 1994, 98, 1464–1471.CrossRefGoogle Scholar
  21. [21]
    Sowerby, S. J.; Edelwirth, M.; Heckl, W. M. Self-assembly at the prebiotic solid-liquid interface: Structure of selfassembled monolayers of adenine and guanine bases formed on inorganic surfaces. J. Phys. Chem. B 1998, 102, 5914–5922.CrossRefGoogle Scholar
  22. [22]
    Sowerby, S. J.; Cohn, C. H.; Heckl, W. M.; Holm, N. G. Differential adsorption of nucleic acid bases: Relevance to the origin of life. Proc. Natl. Acad. Sci. U. S. A, 2001, 98, 820–822.CrossRefGoogle Scholar
  23. [23]
    Wilson, D. S.; Szostak, J. W. In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 1999, 68, 611–647.CrossRefGoogle Scholar
  24. [24]
    Dukovic, G.; Balaz, M.; Doak, P.; Berova, N. D.; Zheng, M.; McLean, R. S.; Brus, L. E. Racemic single-walled carbon nanotubes exhibit circular dichroism when wrapped with DNA. J. Am. Chem. Soc. 2006, 128, 9004–9005.CrossRefGoogle Scholar
  25. [25]
    Johnson, R. R.; Johnson, A. T. C.; Klein, M. L. Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics. Nano Lett. 2008, 8, 69–75.CrossRefGoogle Scholar
  26. [26]
    Enyashin, A. N.; Gemming, S.; Seifert, G. DNA-wrapped carbon nanotubes. Nanotechnology 2007, 18, 245702.CrossRefGoogle Scholar
  27. [27]
    Frischknecht, A. L.; Martin, M. G. Simulation of the adsorption of nucleotide monophosphates on carbon nanotubes in aqueous solution. J. Phys. Chem. C 2008, 112, 6271–6278.CrossRefGoogle Scholar
  28. [28]
    Gowtham, S.; Scheicher, R. H.; Pandey, R.; Karna, S.; Ahuja, R. First-principles study of physisorption of nucleic acid bases on small-diameter carbon nanotubes. Nanotechnology 2008, 19,125701.CrossRefGoogle Scholar
  29. [29]
    Meng, S.; Maragakis, P.; Papaloukas, C.; Kaxiras, E. DNA nucleoside interaction and identification with carbon nanotubes. Nano Lett. 2007, 7, 45–50.CrossRefGoogle Scholar
  30. [30]
    Zheng, M.; Diner, B. A. Solution redox chemistry of carbon nanotubes. J. Am. Chem. Soc. 2004, 126, 15490–15494.CrossRefGoogle Scholar
  31. [31]
    Lustig, S. R.; Jagota, A.; Khripin, C.; Zheng, M. Theory of structure-based carbon nanotube separations by ionexchange chromatography of DNA/CNT hybrids. J. Phys. Chem. B 2005, 109, 2559–2566.CrossRefGoogle Scholar
  32. [32]
    Wei, C. Radius and chirality dependent conformation of polymer molecule at nanotube interface. Nano Lett. 2006, 6, 1627–1631.CrossRefGoogle Scholar
  33. [33]
    Bauer, B. J.; Becker, M. L.; Bajpai, V.; Fagan, J. A.; Hobbie, E. K.; Migler, K.; Guttman, C. M.; Blair, W. R. Measurement of single-wall nanotube dispersion by size exclusion chromatography. J. Phys. Chem. C 2007, 111, 17914–17918.CrossRefGoogle Scholar
  34. [34]
    Bauer, B.J.; Fagan, J. A.; Hobbie, E. K.; Chun, J.; Bajpai, V. Chromatographic fractionation of swnt/dna dispersions with on-line multi-angle light scattering. J. Phys. Chem. C 2008, 112, 1842–1850.CrossRefGoogle Scholar
  35. [35]
    Zhang, L.; Zaric, S.; Tu, X.; Wang, X.; Zhao, W.; Dai, H. Assessment of chemically separated carbon nanotubes for nanoelectronics. J. Am. Chem. Soc. 2008, 130, 2686–2691.CrossRefGoogle Scholar
  36. [36]
    Chou, S. G.; Decamp, M. F.; Jiang, J.; Samsonidze, G. G.; Barros, E. B.; Plentz, F.; Jorio, A.; Zheng, M.; Onoa, G. B.; Semke, E. D.; et al. Phonon-assisted exciton relaxation dynamics for a (6,5)-enriched DNA-wrapped single-walled carbon nanotube sample. Phys. Rev. B 2005, 72, 195415.CrossRefGoogle Scholar
  37. [37]
    Chou, S. G.; Plentz, F.; Jiang, J.; Saito, R.; Nezich, D.; Ribeiro, H. B.; Jorio, A.; Pimenta, M. A.; Samsonidze, G. G.; Santos, A. P.; et al. Phonon-assisted excitonic recombination channels observed in DNA-wrapped carbon nanotubes using photoluminescence spectroscopy. Phys. Rev. Lett. 2005, 94, 127402.CrossRefGoogle Scholar
  38. [38]
    Torrens, O. N.; Milkie, D. E.; Zheng, M.; Kikkawa, J. M. Photoluminescence from intertube carrier migration in single-walled carbon nanotube bundles. Nano Lett. 2006, 6, 2864–2867.CrossRefGoogle Scholar
  39. [39]
    Zheng, M.; Rostovtsev, V. V. Photoinduced charge transfer mediated by DNA-wrapped carbon nanotubes. J. Am. Chem. Soc. 2006, 128, 7702–7703.CrossRefGoogle Scholar
  40. [40]
    Carlson, L. J.; Maccagnano, S. E.; Zheng, M.; Silcox, J.; Krauss, T. D. Fluorescence efficiency of individual carbon nanotubes. Nano Lett. 2007, 7, 3698–3703.CrossRefGoogle Scholar
  41. [41]
    Chou, S. G.; Son, H.; Kong, J.; Jorio, A. Length characterization of DNA-wrapped carbon nanotubes using Raman spectroscopy. Appl. Phys. Lett. 2007, 90, 131109.CrossRefGoogle Scholar
  42. [42]
    Torrens, O. N.; Milkie, D. E.; Ban, H. Y.; Zheng, M.; Onoa, G. B.; Gierke, T. D.; Kikkawa, J. M. Measurement of chiral-dependent magnetic anisotropy in carbon nanotubes. J. Am. Chem. Soc. 2007, 129, 252–253.CrossRefGoogle Scholar
  43. [43]
    Song, D.; Wang, F.; Dukovic, G.; Zheng, M.; Semke, E. D.; Brus, L. E.; Heinz, T. F. Direct measurement of the lifetime of optical phonons in single-walled carbon nanotubes. Phys. Rev. Lett. 2008, 100, 225503.CrossRefGoogle Scholar
  44. [44]
    Becker, M. L.; Fagan, J. A.; Gallant, N. D.; Bauer, B. J.; Bajpai, V.; Hobbie, E. K.; Lacerda, S. H.; Migler, K. B.; Jakupciak, J. P. Length-dependent uptake of DNA-wrapped single-walled carbon nanotubes. Adv. Mater. 2007, 19, 939–945.CrossRefGoogle Scholar
  45. [45]
    Manohar, S.; Tang, T.; Jagota, A. Structure of homopolymer DNA-CNT hybrids. J. Phys. Chem. C 2007, 111, 17835–17845.CrossRefGoogle Scholar

Copyright information

© Tsinghua Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.DuPont Central Research and DevelopmentWilmingtonUSA

Personalised recommendations