Simulation studies of a “nanogun” based on carbon nanotubes

Abstract

Quantum mechanical molecular dynamics simulations show that electrically neutral carbon nanotubes or fullerene balls housed in an outer carbon nanotube can be driven into motion by charging the outer tube uniformly. Positively and negatively charged outer tube are found to have quite different actions on the initially neutral nanotubes or fullerene balls. A positively charged tube can drive out the molecule inside it out at speeds over 1 km/s, just like a “nanogun”, while a negatively charged tube can drive the molecule into oscillation inside it and can absorb inwards a neutral molecule in the vicinity of its open end, like a “nanomanipulator”. The results demonstrate that changing the charge environment in specific ways may open the door to conceptually new nano/molecular electromechanical devices.

References

  1. [1]

    Wang, X.; Song, J.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105.

    Article  CAS  Google Scholar 

  2. [2]

    de Jonge, N.; Lamy, Y.; Schoots, K.; Oosterkamp, T. H. High brightness electron beam from a multi-walled carbon nanotube. Nature 2002, 420, 393–395.

    Article  Google Scholar 

  3. [3]

    Moseler, M.; Landman, U. Formation, stability, and breakup of nanojets. Science 2000, 289, 1165–1169.

    Article  CAS  Google Scholar 

  4. [4]

    Fennimore, A. M.; Yuzvinsky, T. D.; Han, W. Q.; Fuhrer, M. S.; Cumings, J.; Zettl, A. Rotational actuators based on carbon nanotubes. Nature 2003, 424, 408–410.

    Article  CAS  Google Scholar 

  5. [5]

    Baughman, R. H.; Cui, C.; Zakhidov, A. A.; Iqbal, Z.; Barisci, J. N.; Spinks, G. M.; Wallace, G. G.; Mazzoldi, A.; De Rossi, D.; Rinzler, A. G.; Jaschinski, O.; Roth, S.; Kertesz, M. Carbon nanotube actuators. Science 1999, 284, 1340–1344.

    Article  CAS  Google Scholar 

  6. [6]

    Siwy, Z.; Fulinski, A. Fabrication of a synthetic nanopore ion pump. Phys. Rev. Lett. 2002, 89, 198103.

    Google Scholar 

  7. [7]

    Léger, Y.; Besombes, L.; Fernández-Rossier, J.; Maingault, L.; Mariette, H. Electrical control of a single Mn atom in a quantum dot. Phys. Rev. Lett. 2006, 97, 107401.

    Google Scholar 

  8. [8]

    Ahn, C. H. K.; Rabe, M.; Triscone, J.-M. Ferroelectricity at the nanoscale: Local polarization in oxide thin films and heterostructures. Science 2004, 303,488–491.

    Article  CAS  Google Scholar 

  9. [9]

    Gong, X.; Li, J. Lu, H.; Wan, R.; Li, J.; Hu, J.; Fang, H. A charge-driven molecular water pump. Nat. Nanotechnol. 2007, 2, 709–712.

    Article  CAS  Google Scholar 

  10. [10]

    Hinds, B. Molecular dynamics: A blueprint for a nanoscale pump. Nat. Nanotechnol. 2007, 2, 673–674.

    Article  CAS  Google Scholar 

  11. [11]

    Yoshida, M.; Muneyuki, E.; Hisabori, T. ATP synthase — A marvellous rotary engine of the cell. Nat. Rev. Mol. Cell Bio. 2001, 2, 669–677.

    Article  CAS  Google Scholar 

  12. [12]

    Soong, R. K.; Bachand, G. D.; Neves, H. P.; Olkhovets, A. G.; Craighead, H. G. Montemagno, C. D. Powering an inorganic nanodevice with a biomolecular motor. Science 2000, 290, 1555–1558.

    Article  CAS  Google Scholar 

  13. [13]

    Ahern, C. A.; Horn, R. Stirring up controversy with a voltage sensor paddle. Trends Neurosci. 2004, 27, 303–307.

    Article  CAS  Google Scholar 

  14. [14]

    Ishii, D.; Kinbara, K.; Ishida, Y.; Ishii, N.; Okochi, M.; Yohda, M.; Aida, T. Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. Nature 2003, 423, 628–632.

    Article  CAS  Google Scholar 

  15. [15]

    Sigworth, F. J. Structural biology: Life’s transistors. Nature 2003, 423, 21–22.

    Article  CAS  Google Scholar 

  16. [16]

    Perozo, E.; Rees, D. C. Structure and mechanism in prokaryotic mechanosensitive channels. Curr. Opin. Struc. Biol. 2003, 13, 432–442.

    Article  CAS  Google Scholar 

  17. [17]

    Service, R. F. Superstrong nanotubes show they are smart, too. Science 1998, 281, 940–942.

    Article  CAS  Google Scholar 

  18. [18]

    Chen, R. J.; Bangsaruntip, S.; Drouvalakis, K. A.; Kam, N. W. S.; Shim, M.; Li, Y.; Kim, W.; Utz, P. J.; Dai, H. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. P. Natl. Acad. Sci. USA 2003, 100, 4984–4989.

    Article  CAS  Google Scholar 

  19. [19]

    Guo, W.; Guo, Y. Giant axial electrostrictive deformation in carbon nanotubes. Phys. Rev. Lett. 2003, 91, 115501.

    Google Scholar 

  20. [20]

    Lee, J.; Kim, H.; Kahng, S.-J.; Kim, G.; Son, Y.-W.; Ihm, J.; Kato, H.; Wang, Z. W.; Okazaki, T.; Shinohara, H.; Kuk, Y. Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes. Nature 2002, 415, 1005–1008.

    Article  CAS  Google Scholar 

  21. [21]

    Kwon, Y. K.; Tománek, D. Iijima, S. “Bucky shuttle” memory device: Synthetic approach and molecular dynamics simulations. Phys. Rev. Lett. 1999, 82, 1470–1473.

    Article  CAS  Google Scholar 

  22. [22]

    Cumings, J.; Zettl, A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 2000, 289, 602–604.

    Article  CAS  Google Scholar 

  23. [23]

    Guo, W.; Guo, Y.; Gao, H.; Zheng, Q.; Zhong, W. Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes. Phys. Rev. Lett. 2003, 91, 125501.

    Google Scholar 

  24. [24]

    Cummings, J.; Zettl, A. Localization and nonlinear resistance in telescopically extended nanotubes. Phys. Rev. Lett. 2004, 93, 086801.

    Google Scholar 

  25. [25]

    Rydberg, H.; Dion, M.; Jacobson, N.; Schröder, E.; Hyldgaard, P.; Simak, S. I.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for layered structures. Phys. Rev. Lett. 2003, 91, 126402.

    Google Scholar 

  26. [26]

    Stewart, J. J. P. Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem. 1989, 10, 209–220.

    Article  CAS  Google Scholar 

  27. [27]

    Stewart, J. J. P. Optimization of parameters for semiempirical methods II. applications. J. Comput. Chem. 1989, 10, 221–264.

    Article  CAS  Google Scholar 

  28. [28]

    Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.

    Google Scholar 

  29. [29]

    Poncharal, P.; Wang, Z. L.; Ugarte, D.; Heer, W. A. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 1999, 283, 1513–1516.

    Article  CAS  Google Scholar 

  30. [30]

    Keblinski, P.; Nayak, S. K.; Zapol, P.; Ajayan, P. M. Charge distribution and stability of charged carbon nanotubes. Phys. Rev. Lett. 2002, 89, 255503.

    Google Scholar 

  31. [31]

    Wei, B. Q.; D’Arcy-Gall, J.; Ajayan, P. M.; Ramanath, G. Tailoring structure and electrical properties of carbon nanotubes using kilo-electron-volt ions. Appl. Phys. Lett. 2003, 83, 3851–3853.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wanlin Guo.

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Dai, Y., Tang, C. & Guo, W. Simulation studies of a “nanogun” based on carbon nanotubes. Nano Res. 1, 176–183 (2008). https://doi.org/10.1007/s12274-008-8014-7

Download citation

Keywords

  • Energy conversion
  • carbon nanotube
  • neutral molecule
  • driving mechanisms