Nano Research

, Volume 1, Issue 1, pp 1–8 | Cite as

Energy harvesting for self-powered nanosystems

Open Access
Review Article


In this article, an introduction is presented about the energy harvesting technologies that have potential for powering nanosystems. Our discussion mainly focuses on the approaches other than the well-known solar cell and thermoelectrics. We mainly introduce the piezoelectric nanogenerators developed using aligned ZnO nanowire arrays. This is a potential technology for converting mechanical movement energy (such as body movement, muscle stretching, blood pressure), vibration energy (such as acoustic/ultrasonic wave), and hydraulic energy (such as fl ow of body fl uid, blood fl ow, contraction of blood vessel, dynamic fl uid in nature) into electric energy for self-powered nanosystems.


Nanogenerator self-powered nanosystem energy harvesting 


  1. [1]
    Special issue on Sustainability and Energy, Science 2007, Feb. 9.Google Scholar
  2. [2]
    Special issue on Harnessing Materials for Energy, MUS Bull. 2008, 33 (4).Google Scholar
  3. [3]
    Wang, Z. L. Self-powering nanotech. Scientifi c American 2008, 82–87.Google Scholar
  4. [4]
    Yu, C.; Hao, Q.; Saha, S.; Shi, L.; Kong, X; Wang, Z. L. Integration of metal oxide nanobelts with microsystems for nerve agent detection. Appl. Phys. Lett. 2005, 86, 063101.CrossRefGoogle Scholar
  5. [5]
    Paradiso, J. A.; Starner, T. Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing 2005, 14, 18–27.CrossRefGoogle Scholar
  6. [6]
    Leland, E. S.; Baker, J.; Carleton, E.; Reilly, E.; Lai, E.; Otis, B.; Rabaey, J. M.; Wright, P. K.; Sundararajan, V. IEEE Pervasive Computin 2005, 14, 18–28.Google Scholar
  7. [7]
    Tian, B.; Xiaolin, Z.; Kempa, T. J.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–890.CrossRefGoogle Scholar
  8. [8]
    Bond, D. R.; Holmes, D. E.; Tender, L. M.; Lovley, D. R. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 2002, 295, 483–485.CrossRefGoogle Scholar
  9. [9]
    Bachand, G. D.; Montemagno, C. D. Constructing organic/inorganic NEMS devices powered by biomolecular motors. Biomed. Microdevices 2000, 2, 179–185.CrossRefGoogle Scholar
  10. [10]
    Wang, M. D.; Schnitzer, M. J.; Yin, H.; Landick, R.; Gelles, J.; Block, S. M. Force and velocity measured for single molecules of RNA polymerase. Science 1998, 282, 902–907.CrossRefGoogle Scholar
  11. [11]
    Kitamura, H.; Tokunaga, M.; Iwane, A. H.; Yanagida, T. A single myosin head moves along an actin fi lament with regular steps of 5.3 nanometres. Nature 1999, 397, 129–134.CrossRefGoogle Scholar
  12. [12]
    Yasuda, R.; Noji, H.; Kinosita, K., Jr.; Yosida, M. F1-ATPase is a highly effi cient molecular motor that rotates with discrete 120° steps. Cell 1998, 93, 1117–1124.CrossRefGoogle Scholar
  13. [13]
    Noji, H.; Yasuda, R.; Yoshida, M.; Kinosita, K., Jr. Direct observation of the rotation of F1-ATPase, Nature 1997, 386, 299–302.CrossRefGoogle Scholar
  14. [14]
    Shi, L.; Li, D.; Yu, C.; Jang, W.; Kim, D.; Yao, Z.; Kim, P.; Majumdar, A. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transfer 2003, 125, 881–888.CrossRefGoogle Scholar
  15. [15]
    Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.CrossRefGoogle Scholar
  16. [16]
    Song, J. H.; Zhou, J.; Wang, Z. Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment. Nano Lett. 2006, 6, 1656–1662.CrossRefGoogle Scholar
  17. [17]
    Zhou, J.; Xu, N. S.; Wang, Z. L. Dissolving behavior and stability of ZnO wires in biofluids: A study on biodegradability and biocompatibility of ZnO nanostructures. Adv. Mater. 2006, 18, 2432–2435.CrossRefGoogle Scholar
  18. [18]
    Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105.CrossRefGoogle Scholar
  19. [19]
    Liu, J.; Fei, P.; Zhou, J.; Tummala, R.; Wang, Z. L. Toward high output-power nanogenerator. Appl. Phys. Lett. 2008, in press.Google Scholar
  20. [20]
    Gao, P. X.; Song, J. H.; Liu, J.; Wang, Z. L. Nanowire nanogenerators on plastic substrates as flexible power source. Adv. Mater. 2007, 19, 67–72.CrossRefGoogle Scholar
  21. [21]
    Qin, Y.; Wang, X. D.; Wang, Z. L. Microfiber-nanowire hybrid structure for energy scavenging. Nature 2008, 451, 809–813.CrossRefGoogle Scholar

Copyright information

© Tsinghua Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlanta, GAUSA

Personalised recommendations