Skip to main content
Log in

Leveraging graph convolutional networks for semi-supervised fault diagnosis of HVAC systems in data-scarce contexts

  • Research Article
  • Advances in Modeling and Simulation Tools
  • Published:
Building Simulation Aims and scope Submit manuscript

Abstract

The continuous accumulation of operational data has provided an ideal platform to devise and implement customized data analytics for smart HVAC fault detection and diagnosis. In practice, the potentials of advanced supervised learning algorithms have not been fully realized due to the lack of sufficient labeled data. To tackle such data challenges, this study proposes a graph neural network-based approach to effectively utilizing both labeled and unlabeled operational data for optimum decision-makings. More specifically, a graph generation method is proposed to transform tabular building operational data into association graphs, based on which graph convolutions are performed to derive useful insights for fault classifications. Data experiments have been designed to evaluate the values of the methods proposed. Three datasets on HVAC air-side operations have been used to ensure the generalizability of results obtained. Different data scenarios, which vary in training data amounts and imbalance ratios, have been created to comprehensively quantify behavioral patterns of representative graph convolution networks and their architectures. The research results indicate that graph neural networks can effectively leverage associations among labeled and unlabeled data samples to achieve an increase of 2.86%–7.30% in fault classification accuracies, providing a novel and promising solution for smart building management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AHU:

air handling units

Cheb:

Chebyshev network

FCNN:

fully connected neural network

FDD:

fault detection and diagnosis

GAT:

graph attention network

GCN:

graph convolution network

GCN2:

graph convolution network with initial residual connections and identity mapping

GNN:

graph neural network

HVAC:

heating, ventilation and air-conditioning

SAGE:

graph sample and aggregate network

References

  • Chakraborty D, Elzarka H (2019). Early detection of faults in HVAC systems using an XGBoost model with a dynamic threshold. Energy and Buildings, 185: 326–344.

    Article  Google Scholar 

  • Chen M, Wei Z, Huang Z, et al. (2020). Simple and deep graph convolutional networks. In: Proceedings of the 37th International Conference on Machine Learning.

  • Chen J, Zhang L, Li Y, et al. (2022). A review of computing-based automated fault detection and diagnosis of heating, ventilation and air conditioning systems. Renewable and Sustainable Energy Reviews, 161: 112395.

    Article  Google Scholar 

  • Chen Z, Xiao F, Guo F, et al. (2023). Interpretable machine learning for building energy management: A state-of-the-art review. Advances in Applied Energy, 9: 100123.

    Article  Google Scholar 

  • Daigavane A, Ravindran B, Aggarwal G (2021). Understanding convolutions on graphs. Distill, https://doi.org/10.23915/distill.00032.

  • Fan Y, Cui X, Han H, et al. (2019). Chiller fault diagnosis with field sensors using the technology of imbalanced data. Applied Thermal Engineering, 159: 113933.

    Article  Google Scholar 

  • Fan C, Yan D, Xiao F, et al. (2021a). Advanced data analytics for enhancing building performances: From data-driven to big data-driven approaches. Building Simulation, 14: 3–24.

    Article  Google Scholar 

  • Fan C, Liu Y, Liu X, et al. (2021b). A study on semi-supervised learning in enhancing performance of AHU unseen fault detection with limited labeled data. Sustainable Cities and Society, 70: 102874.

    Article  Google Scholar 

  • Fan C, Liu X, Xue P, et al. (2021c). Statistical characterization of semi-supervised neural networks for fault detection and diagnosis of air handling units. Energy and Buildings, 234: 110733.

    Article  Google Scholar 

  • Fan C, Li X, Zhao Y, et al. (2021d). Quantitative assessments on advanced data synthesis strategies for enhancing imbalanced AHU fault diagnosis performance. Energy and Buildings, 252: 111423.

    Article  Google Scholar 

  • Fan C, He W, Liu Y, et al. (2022). A novel image-based transfer learning framework for cross-domain HVAC fault diagnosis: From multi-source data integration to knowledge sharing strategies. Energy and Buildings, 262: 111995.

    Article  Google Scholar 

  • Fey M, Lenssen JE (2019). Fast graph representation learning with PyTorch Geometric. Available at https://github.com/pyg-team/pytorch_geometric. arXiv:1903.02428.

  • Gao Y, Han H, Ren ZX, et al. (2021). Comprehensive study on sensitive parameters for chiller fault diagnosis. Energy and Buildings, 251: 111318.

    Article  Google Scholar 

  • Granderson J, Lin GJ (2019). Inventory of data sets for AFDD evaluation. Berkeley, CA, USA: Lawrence Berkeley National Laboratory.

    Google Scholar 

  • Grover A, Leskovec J (2016). Node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA.

  • Han H, Cui X, Fan Y, et al. (2019). Least Squares support vector machine (LS-SVM)-based chiller fault diagnosis using fault indicative features. Applied Thermal Engineering, 154: 540–547.

    Article  Google Scholar 

  • He K, Zhang X, Ren S, et al. (2015). Deep residual learning for image recognition. arXiv:1512.03385.

  • Jiang W, Luo J (2022). Graph neural network for traffic forecasting: A survey. Expert Systems with Applications, 207: 117921.

    Article  Google Scholar 

  • Keramatfar A, Rafiee M, Amirkhani H (2022). Graph neural networks: A bibliometrics overview. Machine Learning with Applications, 10: 100401.

    Article  Google Scholar 

  • Li S, Wen J (2014). A model-based fault detection and diagnostic methodology based on PCA method and wavelet transform. Energy and Buildings, 68: 63–71.

    Article  Google Scholar 

  • Li G, Chen H, Hu Y, et al. (2018). An improved decision tree-based fault diagnosis method for practical variable refrigerant flow system using virtual sensor-based fault indicators. Applied Thermal Engineering, 129: 1292–1303.

    Article  Google Scholar 

  • Li Y, O’Neill Z (2018). A critical review of fault modeling of HVAC systems in buildings. Building Simulation, 11: 953–975.

    Article  Google Scholar 

  • Li B, Cheng F, Cai H, et al. (2021). A semi-supervised approach to fault detection and diagnosis for building HVAC systems based on the modified generative adversarial network. Energy and Buildings, 246: 111044.

    Article  Google Scholar 

  • Li T, Zhao Y, Yan K, et al. (2022a). Probabilistic graphical models in energy systems: A review. Building Simulation, 15: 699–728.

    Article  Google Scholar 

  • Li T, Zhou Z, Li S, et al. (2022b). The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study. Mechanical Systems and Signal Processing, 168: 108653.

    Article  Google Scholar 

  • Liu J, Zhang Q, Li X, et al. (2021). Transfer learning-based strategies for fault diagnosis in building energy systems. Energy and Buildings, 250: 111256.

    Article  Google Scholar 

  • Liu J, Li X, Li G, et al. (2022). A statistical-based online cross-system fault detection method for building chillers. Building Simulation, 15: 1527–1543.

    Article  Google Scholar 

  • Lundberg SM, Lee SI (2017). A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA.

  • Machlev R, Heistrene L, Perl M, et al. (2022). Explainable Artificial Intelligence (XAI) techniques for energy and power systems: Review, challenges and opportunities. Energy and AI, 9: 100169.

    Article  Google Scholar 

  • Mirnaghi MS, Haghighat F (2020). Fault detection and diagnosis of large-scale HVAC systems in buildings using data-driven methods: A comprehensive review. Energy and Buildings, 229: 110492.

    Article  Google Scholar 

  • Piscitelli MS, Mazzarelli DM, Capozzoli A (2020). Enhancing operational performance of AHus through an advanced fault detection and diagnosis process based on temporal association and decision rules. Energy and Buildings, 226: 110369.

    Article  Google Scholar 

  • Piscitelli MS, Brandi S, Capozzoli A, et al. (2021). A data analytics-based tool for the detection and diagnosis of anomalous daily energy patterns in buildings. Building Simulation, 14: 131–147.

    Article  Google Scholar 

  • Pope PE, Kolouri S, Rostami M, et al. (2019). Explainability methods for graph convolutional neural networks. In: Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA.

  • R Development Core Team (2008). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available at http://www.R-project.org.

    Google Scholar 

  • Ribeiro MT, Singh S, Guestrin C (2016). “Why should I trust you?”: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA.

  • Sanchez-Lengeling B, Reif E, Pearce A, et al. (2021). A gentle introduction to graph neural networks. Distill, https://doi.org/10.23915/distill.00033.

  • Sun K, Hong T, Kim J, et al. (2022). Application and evaluation of a pattern-based building energy model calibration method using public building datasets. Building Simulation, 15: 1385–1400.

    Article  Google Scholar 

  • Tang R, Fan C, Zeng F, et al. (2022). Data-driven model predictive control for power demand management and fast demand response of commercial buildings using support vector regression. Building Simulation, 15: 317–331.

    Article  Google Scholar 

  • Vishwanathan S, Schraudolph NN, Kondor R, et al. (2010). Graph kernels. Journal of Machine Learning Research, 11: 1201–1242.

    MathSciNet  MATH  Google Scholar 

  • Wen J, Li S (2011). Tools for evaluating fault detection and diagnostic methods for air-handling units. ASHRAE RP-1312 Final Report. Atlanta, GA, USA: American Society of Heating, Refrigerating and Air-Conditioning Engineers.

    Google Scholar 

  • Wu Z, Pan S, Chen F, et al. (2021). A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 32: 4–24.

    Article  MathSciNet  Google Scholar 

  • Xia Y, Ding Q, Li Z, et al. (2021). Fault detection for centrifugal chillers using a Kernel Entropy Component Analysis (KECA) method. Building Simulation, 14: 53–61.

    Article  Google Scholar 

  • Yan K, Zhong C, Ji Z, et al. (2018). Semi-supervised learning for early detection and diagnosis of various air handling unit faults. Energy and Buildings, 181: 75–83.

    Article  Google Scholar 

  • Yan K, Chong A, Mo Y (2020a). Generative adversarial network for fault detection diagnosis of chillers. Building and Environment, 172: 106698.

    Article  Google Scholar 

  • Yan K, Huang J, Shen W, et al. (2020b). Unsupervised learning for fault detection and diagnosis of air handling units. Energy and Buildings, 210: 109689.

    Article  Google Scholar 

  • Yao W, Li D, Gao L (2022). Fault detection and diagnosis using tree-based ensemble learning methods and multivariate control charts for centrifugal chillers. Journal of Building Engineering, 51: 104243.

    Article  Google Scholar 

  • Zhang L, Leach M (2022). Evaluate the impact of sensor accuracy on model performance in data-driven building fault detection and diagnostics using Monte Carlo simulation. Building Simulation, 15: 769–778.

    Article  Google Scholar 

  • Zhang Y, Yu J (2022). Pruning graph convolutional network-based feature learning for fault diagnosis of industrial processes. Journal of Process Control, 113: 101–113.

    Article  Google Scholar 

  • Zhao Y, Wang S, Xiao F (2013). Pattern recognition-based chillers fault detection method using Support Vector Data Description (SVDD). Applied Energy, 112: 1041–1048.

    Article  Google Scholar 

  • Zhou J, Cui G, Hu S, et al. (2020). Graph neural networks: A review of methods and applications. AI Open, 1: 57–81.

    Article  Google Scholar 

  • Zhu X, Chen K, Anduv B, et al. (2021). Transfer learning based methodology for migration and application of fault detection and diagnosis between building chillers for improving energy efficiency. Building and Environment, 200: 107957.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of this research by the National Natural Science Foundation of China (No. 52278117), the Philosophical and Social Science Program of Guangdong Province, China (GD22XGL20) and the Shenzhen Science and Technology Program (No. 20220531101800001 and No. 20220810160221001).

Author information

Authors and Affiliations

Authors

Contributions

Cheng Fan: conceptualization, methodology, software, writing—original draft preparation, writing—reviewing & editing. Yiwen Lin: formal analysis, investigation. Marco Savino Piscitelli: methodology, visualization. Roberto Chiosa: methodology, visualization. Huilong Wang: writing—reviewing & editing, project administration. Alfonso Capozzoli: methodology. Yuanyuan Ma: data curation, software.

Corresponding author

Correspondence to Huilong Wang.

Ethics declarations

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, C., Lin, Y., Piscitelli, M.S. et al. Leveraging graph convolutional networks for semi-supervised fault diagnosis of HVAC systems in data-scarce contexts. Build. Simul. 16, 1499–1517 (2023). https://doi.org/10.1007/s12273-023-1041-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12273-023-1041-1

Keywords

Navigation