Advertisement

Building Simulation

, Volume 11, Issue 4, pp 753–763 | Cite as

Integration of a magnetocaloric heat pump in a low-energy residential building

  • Hicham Johra
  • Konstantin Filonenko
  • Per Heiselberg
  • Christian Veje
  • Tian Lei
  • Stefano Dall’Olio
  • Kurt Engelbrecht
  • Christian Bahl
Research Article Building Systems and Components
  • 147 Downloads

Abstract

The EnovHeat project aims at developing an innovative heat pump system based on the magnetocaloric effect and active magnetic regenerator technology to provide for the heating needs of a single family house in Denmark. Unlike vapor-compression devices, magnetocaloric heat pumps use the reversible magnetocaloric effect of a solid refrigerant to build a cooling/heating cycle. It has the potential for high coefficient of performance, more silent operation and efficient part-load control. After presenting the operation principles of the magnetocaloric device and the different models used in the current numerical study, this article demonstrates for the first time the possibility to utilize this novel heat pump in a building. This device can be integrated in a single hydronic loop including a ground source heat exchanger and a radiant under-floor heating system. At maximum capacity, this magnetocaloric heat pump can deliver 2600 W of heating power with an appreciable average seasonal system COP of 3.93. On variable part-load operation with a simple fluid flow controller, it can heat up an entire house with an average seasonal system COP of 1.84.

Keywords

magnetocaloric heat pump magnetic heating active magnetic regenerator innovative heating system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financed by the ENOVHEAT project, which is funded by Innovation Fund Denmark (contract no 12-132673).

References

  1. Aprea C, Greco A, Maiorino A, Masselli C (2016). The energy performances of a rotary permanent magnet magnetic refrigerator. International Journal of Refrigeration, 61: 1–11.CrossRefGoogle Scholar
  2. Bahl CRH (2015). EnovHeat project summary: Development of efficient novel magnetocaloric heat pumps. Available at http://www.enovheat.dk/Research/ProjectSummary. Accessed 30 Aug 2017.Google Scholar
  3. Barclay JA (1982). Use of a ferrofluid as the heat-exchange fluid in a magnetic refrigerator. Journal of Applied Physics, 53: 2887–2894.CrossRefGoogle Scholar
  4. Basso V, Küpferling M, Curcio C, Bennati C, Barzca A, Katter M, Bratko M, Lovell E, Turcaud J, Cohen L (2015). Specific heat and entropy change at the first order phase transition of La(Fe-Mn-Si)13-H compounds. Journal of Applied Physics, 118(5): 053907.CrossRefGoogle Scholar
  5. Dall’Olio S, Lei T, Engelbrecht K, Bahl CRH (2017). The effect of tapering on a magnetocaloric regenerator bed. International Journal of Refrigeration, 84: 300–308.CrossRefGoogle Scholar
  6. Diersch HJG, Bauer D, Heidemann W, Rühaak W, Schätzl P (2011). Finite element modeling of borehole heat exchanger systems—Part 1. Fundamentals. Computers and Geosciences, 37: 1122–1135.CrossRefGoogle Scholar
  7. Engelbrecht K (2008). A numerical model of an active magnetic regenerator refrigerator with experimental validation. PhD Thesis, University of Wisconsin, Madison, USA.Google Scholar
  8. Engelbrecht K, Eriksen D, Bahl CRH, Bjørk R, Geyti J, Lozano JA, Nielsen KK, Saxild F, Smith A, Pryds N (2012). Experimental results for a novel rotary active magnetic regenerator. International Journal of Refrigeration, 35: 1498–1505.CrossRefGoogle Scholar
  9. Engelbrecht K, Tušek J, Nielsen KK, Kitanovski A, Bahl CRH, Poredoš A (2013). Improved modelling of a parallel plate active magnetic regenerator. Journal of Physics D: Applied Physics, 46(25): 255002.CrossRefGoogle Scholar
  10. Eriksen D, Engelbrecht K, Bahl CRH, Bjørk R (2016). Exploring the efficiency potential for an active magnetic regenerator. Science and Technology for the Built Environment, 22: 527–533.CrossRefGoogle Scholar
  11. European Committee for Standardization (2011). EN 1264:2011—Water Based Surface Embedded Heating and Cooling Systems. Brussels: European Committee for Standardization.Google Scholar
  12. Georges L, Iwanek T, Thalfeldt M (2017). Energy efficiency of hydronic space-heating distribution systems in super-insulated residential buildings. In: Proceedings of the 15th International IBPSA Building Simulation Conference (BS2017), San Francisco, USA, pp.1852–1861.Google Scholar
  13. Grundfos Product Center (2013). GRUNDFOS Data Booklet—CR1-9 A-FGJA-E-HQQE 3x230/400 50Hz - Grundfos Pump 96478872. Available at http://product-selection.grundfos.com/productdetail. product-detail.html?lang=ENU&productnumber=964788 72&productrange=gma&qcid=228594986. Accessed 30 Aug 2017.Google Scholar
  14. Insinga AR (2016). Optimising magnetostatic assemblies. PhD Thesis, Technical University of Denmark, Denmark.Google Scholar
  15. Insinga AR, Bjørk R, Smith A, Bahl CRH (2016). Optimally segmented permanent magnet structures. IEEE Transactions on Magnetics, 52(12): 7210306.CrossRefGoogle Scholar
  16. ISO (2012). ISO 11855:2012—Building Environment Design. Design, Dimensioning, Installation and Control of Embedded Radiant Heating and Cooling Systems. Geneva: International Organization for Standardization.Google Scholar
  17. Jacobs S, Auringer J, Boeder A, Chell J, Komorowski L, Leonard J, Russek S, Zimm C (2014). The performance of a large-scale rotary magnetic refrigerator. International Journal of Refrigeration, 37: 84–91.CrossRefGoogle Scholar
  18. Dansk Energi (2011). Den lille blå om Varmepumper. Jensen JB (Dansk Energi), Hvenegaard CM (Teknologisk Institut), Pedersen SV (Teknologisk Institut), Lindholm D (Dansk Energi). (in Danish)Google Scholar
  19. Jensen RL, Nørgaard J, Daniels O, Justesen RO (2011). Person-og forbrugsprofiler: bygningsintegreret energiforsyning (DCE Technical Reports; Nr. 69). Aalborg University, Denmark.Google Scholar
  20. Johra H, Heiselberg P (2016). Description and validation of a MATLAB-Simulink single family house energy model with furniture and phase change materials (DCE Technical Reports; No. 187). Aalborg University, Denmark.Google Scholar
  21. Kalagasidis AS, Rode C, Woloszyn M (2008). HAM-Tools, a whole building simulation tool in Annex 41. In: Proceedings of the IEA ECBCS Annex 41 Closing Seminar, Copenhagen, Denmark, pp. 21–35.Google Scholar
  22. Kitanovski A, Tušek J, Tomc U, Plaznik U, Ožbolt M, Poredoš A (2015). Magnetocaloric Energy Conversion: From Theory to Applications. New York: Springer International Publisher.CrossRefGoogle Scholar
  23. Larsen TS, Brunsgaard C (2010). Komfort Husene: erfaringer, viden og inspiration. Saint-Gobain Isover a/s, Denmark.Google Scholar
  24. Le Dréau J (2014). Energy flow and thermal comfort in buildings—Comparison of radiant and air-based heating and cooling system. PhD Thesis, Aalborg University, Denmark.Google Scholar
  25. Lei T, Engelbrecht K, Nielsen KK, Veje TC (2017). Study of the geometries of active magnetic regenerators for room temperature magnetocaloric refrigeration. Applied Thermal Engineering, 111: 1232–1243.CrossRefGoogle Scholar
  26. Lei T, Navickaite K, Engelbrecht K, Barcza A, Vieyra H, Nielsen KK, Bahl CRH (2018). Passive characterization and active testing of epoxy bonded regenerators for room temperature magnetic refrigeration. Applied Thermal Engineering, 128: 10–19.CrossRefGoogle Scholar
  27. Lozano JA, Capovilla MS, Trevizoli PV, Engelbrecht K, Bahl CRH, Barbosa Jr JR (2016). Development of a novel rotary magnetic refrigerator. International Journal of Refrigeration, 68: 187–197.CrossRefGoogle Scholar
  28. Mugica I, Roy S, Poncet S, Bouchard J, Nesreddine H (2017). Exergy analysis of a parallel-plate active magnetic regenerator with nanofluids. Entropy, 19(9): 464.CrossRefGoogle Scholar
  29. Neves Bez H, Bahl CRH, Nielsen KK, Smith A (2016). Magnetocaloric materials and first order phase transitions. PhD Thesis, Technical University of Denmark, Denmark.Google Scholar
  30. Nielsen KK, Nellis GF, Klein SA (2013). Numerical modeling of the impact of regenerator housing on the determination of Nusselt numbers. International Journal of Heat and Mass Transfer, 65: 552–560.CrossRefGoogle Scholar
  31. Okamura T, Hirano N (2013). Improvement of the performance of room temperature magnetic refrigerator using Gd-alloy. Journal of the Japan Society of Applied Electromagnetics and Mechanics, 21: 10–4.CrossRefGoogle Scholar
  32. Pecharsky VK, Cui J, Johbson DD (2016). (Magneto)caloric refrigeration: Is there light at the end of the tunnel? Philosophical Transactions of the Royal Society A, 374: 20150305.CrossRefGoogle Scholar
  33. RETScreen International (2005). Ground-Source Heat Pump Project Analysis. Canada, Minister of Natural Resources Canada.Google Scholar
  34. Scarpa M, Grau K, Olesen BW (2009). Development and validation of a versatile method for the calculation of heat transfer in waterbased radiant systems. In: Proceedings of the 11th International IBPSA Building Simulation Conference, Glasgow, USA, pp. 27–30.Google Scholar
  35. Self SJ, Reddy BV, Rosen MA (2013). Geothermal heat pump systems: Status review and comparison with other heating options. Applied Energy, 101: 341–348.CrossRefGoogle Scholar
  36. Smith A, Bahl CRH, Bjørk R, Engelbrecht K, Nielsen KK, Pryds N (2012). Materials challenges for high performance magnetocaloric refrigeration devices. Advanced Energy Materials, 2: 1288–1318.CrossRefGoogle Scholar
  37. The Danish Ministry of Economic (2010). Building Regulations. Business Affairs Enterprise, and Construction Authority. Available at http://bygningsreglementet.dk/file/155699/BR10_ENGLISH.pdf. Accessed 30 Aug 2017.Google Scholar
  38. Trevizoli PV, Nakashima AT, Peixer GF, Barbosa Jr JR (2017). Performance assessment of different porous matrix geometries for active magnetic regenerators. Applied Energy, 187: 847–861.CrossRefGoogle Scholar
  39. TRNSYS (2012).TRNSYS 17—Mathematical Reference. Type 31: Pipe Or Duct, University of Wisconsin-Madison Solar Energy Laboratory, TRANSSOLAR Energietechnik GmbH, CSTB, TESS, pp.186–188.Google Scholar
  40. Uponor (2008). Heating and Cooling Solutions—Technical Guidelines. Uponor GmbH, Germany.Google Scholar
  41. Uponor (2012). Ground Energy Technical Information. Uponor GmbH, Germany. Verlag des Vereins Deutscher Ingenieure (2001}). VDI 4640:2001, Thermal use of the underground—Ground source heat pump systems. Verlag des Vereins Deutscher Ingenieure, GermanyGoogle Scholar
  42. Zimm C, Jastrab A, Sternberg A, Pecharsky V, Gschneidner Jr K, Osborne M, Anderson I (1998). Description and performance of a near-room temperature magnetic refrigerator. In: Kittel P (ed), Advances in Cryogenic Engineering, Vol 43. Boston, MA, USA: Springer, pp. 1759–1766.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hicham Johra
    • 1
  • Konstantin Filonenko
    • 2
  • Per Heiselberg
    • 1
  • Christian Veje
    • 2
  • Tian Lei
    • 3
  • Stefano Dall’Olio
    • 3
  • Kurt Engelbrecht
    • 3
  • Christian Bahl
    • 3
  1. 1.Aalborg University, Division of Architectural Engineering, Department of Civil EngineeringAalborg ØstDenmark
  2. 2.University of Southern Denmark, Center for Energy InformaticsOdense MDenmark
  3. 3.Technical University of Denmark, Department of Energy Conversion and StorageRoskildeDenmark

Personalised recommendations