Building Simulation

, Volume 6, Issue 4, pp 385–394 | Cite as

Fire safety assessment of semi-open car parks based on validated CFD simulations

  • M. G. M. van der HeijdenEmail author
  • M. G. L. C. Loomans
  • A. D. Lemaire
  • J. L. M. Hensen
Research Article Indoor/Outdoor Airflow and Air Quality


Guidelines for the safe design of semi-open car parks require a minimum amount of open facade in order to ensure an effective removal of heat and smoke during a car fire. In this study the fire safety level of semi-open car parks is assessed by the use of validated computational fluid dynamics (CFD) simulations for seven different variants. The validation of these simulations consisted of two analyses namely a comparison with measured data of a case study and secondly a comparison with the Alpert’s correlations. The dimensions of the seven variants in the assessment are based on a survey of 75 semi-open car parks in the Netherlands, out of which a typical geometry could be determined. The reached fire safety of the car park variants which comply with the guideline NEN2443 are assessed using temperature and sight length criteria for safe deployment of the fire department. Results show that three out of seven studied variants did not meet these criteria, for one variant the safety level was questionable. It is therefore concluded that it is possible to design semi-open car parks which comply with the commonly used Dutch guideline, yet when assessed with criteria for safe deployment of the fire brigade have an insufficient fire safety level.


fire safety car park computational fluid dynamics (CFD) validation study car fire design guideline 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahrens M (2004). U.S. Vehicle Fire Trends and Patterns. Quincy, USA: Fire Analysis and Research Division National Fire Protection Association.Google Scholar
  2. Alpert RL (1972). Calculation of response time of ceiling-mounted fire detectors. Fire Technology, 8: 181–195.CrossRefGoogle Scholar
  3. CBS (2012). Motorvoertuigen; personenauto’s per periode naar technische kenmerken. Centraal Bureau voor Statistiek, The Netherlands. Available: Scholar
  4. CEN (2001). Design of concrete structures—Part 1.2 General rules—Structural fire design. Eurocode 2, European Committee for Standardization, Brussels.Google Scholar
  5. Chen H, Liu N, Chow W (2009). Wind effects on smoke motion and temperature of ventilation-controlled fire in a two-vent compartment. Building and Environment, 44: 2521–2526.CrossRefGoogle Scholar
  6. Cheng YP, John R (2002). Experimental research of motorcar fire. Journal of China University of Mining and Technology, 31: 557–560.Google Scholar
  7. Chow WK (1998). On safety systems for underground car parks. Tunneling and Underground Space Technology, 13: 281–287.CrossRefGoogle Scholar
  8. Deckers X, Haga S, Sette B, Merci B (2013). Smoke control in case of fire in a large car park: Full-scale experiments. Fire Safety Journal, 57: 11–21.CrossRefGoogle Scholar
  9. Dinenno PJ, Drysdale D, Beyler CL, Walton WD, Custer RLP, Hall JR, Watts JM (2002). SFPE Handbook of Fire Protection Engineering. Quincy, USA: National Fire Protection Association.Google Scholar
  10. Fluent (2006). Fluent 6.3 User’s Guide. Lebanon, USA: Fluent Inc.Google Scholar
  11. Hu LH, Huo R, Li YZ, Wang HB, Chow WK (2005). Full-scale burning tests on studying smoke temperature and velocity along a corridor. Tunneling and Underground Space Technology, 20: 223–229.CrossRefGoogle Scholar
  12. Ingason H (2008). UPTUN: Workpackage 2 Fire Development and Mitigation Measures D221—Target Criteria, official UPTUN deliverable version.Google Scholar
  13. Joyeux D, Kruppa J, Cajot L, Schleich J, Leur P, Twilt L (2001). Demonstration of Real Fire Tests in Car Parks and High Buildings. CTICM France, ARBED Recherches Luxembourg, TNO The Netherlands.Google Scholar
  14. Kandola BS (1986). The effects of simulated fire pressure and outside wind on the internal pressure distribution in a five-storey model building. Fire Safety Journal, 10: 211–227.CrossRefGoogle Scholar
  15. KNMI (2011). De Bosatlas van het klimaat. De Bilt, The Netherlands: Royal Dutch Meteorological Institute.Google Scholar
  16. Lu S, Wang YH, Zhang RF, Zhang HP (2011). Numerical study on impluse ventilation for smoke control in an underground car park. Procedia Engineering, 11: 369–378.CrossRefGoogle Scholar
  17. Mangs J, Keski-Rahkonen O (1994a). Characterization of the fire behaviour of a burning passenger car. Part I: Car fire experiments. Fire Safety Journal, 23: 17–35.CrossRefGoogle Scholar
  18. Mangs J, Keski-Rahkonen O (1994b). Characterization of the Fire behaviour of a burning passenger car. Part II: Parameterization of measured rate of heat release curves. Fire Safety Journal, 23: 37–49.Google Scholar
  19. Meroney RN (2010). Wind effects on atria fires. Journal of Wind Engineering and Industrial Aerodynamics, 99: 443–447.CrossRefGoogle Scholar
  20. Miedema B, Wilken H, Wevers R (2002). Onderzoeksrapportage Brand in parkeergarage van Hertz te Schiphol. Municipality of Haarlemmermeer, The Netherlands.Google Scholar
  21. NEN (2000). Parkeren en stallen van personenauto’s op terreinen en garages, NEN2443, Nederlandse Norm, The Netherlands, ICS 91.040.99.Google Scholar
  22. NEN (2007). Technische grondslagen voor bouwconstructies—TGB 1990—Belastingen en vervormingen, NEN6702, Nederlands Norm, The Netherlands, ICS 91.080.01.Google Scholar
  23. NEN (2010). 2e Ontwerp norm, Rookbeheersings-systemen voor mechanisch geventileerde parkeergarages, NEN6098, Nederlandse Norm, The Netherlands, ICS 13.220.20; 91.140.99.Google Scholar
  24. Noordijk L, Lemaire T (2005). Modelling of fire spread in car parks. Heron, 50: 209–218.Google Scholar
  25. Opstelten IW (2012). Bouwbesluit 2012, The Netherlands, nr. 2011-20112000271178.Google Scholar
  26. Oerle NJ, Lemaire AD, van de Leur PHE (1999). Efficiency of thrust ventilation in closed car parks, Fire tests and simulations. TNO Report 1999-CVB-RR1442.Google Scholar
  27. Poreh M, Trebukov S (2000). Wind effects on smoke motion in buildings. Fire Safety Journal, 35: 257–273.CrossRefGoogle Scholar
  28. Shipp M, Spearpoint M (1995). Measurements of the severity of fires involving private motor vehicles. Fire and Materials, 19: 143–151.CrossRefGoogle Scholar
  29. Stathopoulos T, Storms R (1986). Wind environmental conditions in passages between buildings. Journal of Wind Engineering and Industrial Aerodynamics, 24: 19–31.CrossRefGoogle Scholar
  30. Sultan MA (1996). A model for predicting heat transfer through non-insulated unloaded steel-stud gypsum board wall assemblies exposed to fire. Fire Technology, 32: 239–259.CrossRefGoogle Scholar
  31. van Hooff T, Blocken B (2010). Coupled urban wind flow and indoor natural ventilation modeling on a high-resolution grid: A case study for the Amsterdam ArenA stadium. Environmental Modeling & Software, 25: 51–65.CrossRefGoogle Scholar
  32. Viegas JC (2010). The use of impulse ventilation for smoke control in underground car parks. Tunneling and Underground Technology, 25: 42–53.CrossRefGoogle Scholar
  33. Wieringa J (1992). Updating the Davenport roughness classification. Journal of Wind Engineering and Industrial Aerodynamics, 41: 357–368.CrossRefGoogle Scholar
  34. Yeoh GH, Yuen KK (2009). Computational Fluid Dynamics in Fire Engineering: Theory Modelling and Practice. Oxford, UK: Butterworth-Heinemann.Google Scholar
  35. Zhang XG, Guo YC, Chan CK, Lin WY (2007). Numerical simulations on fire spread and smoke movement in an underground car park. Building and Environment, 42: 3466–3475.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. G. M. van der Heijden
    • 1
    Email author
  • M. G. L. C. Loomans
    • 1
  • A. D. Lemaire
    • 2
  • J. L. M. Hensen
    • 1
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Efectis Nederland BVRijswijkThe Netherlands

Personalised recommendations