Skip to main content
Log in

Comfort and airflow evaluation in spaces equipped with mixing ventilation and cold radiant floor

  • Research Article
  • Indoor/Outdoor Airflow and Air Quality
  • Published:
Building Simulation Aims and scope Submit manuscript

Abstract

In this work the comfort and airflow were evaluated for spaces equipped with mixing ventilation and cold radiant floor. In this study the coupling of an integral multi-nodal human thermal comfort model with a computational fluid dynamics model is developed. The coupling incorporates the predicted mean vote (PMV) index, for the heat exchange between the body and the environment, with the ventilation effectiveness to obtain the air distribution index (ADI) for the occupied spaces with non-uniform environments. The integral multi-nodal human thermal comfort model predicts the external skin and clothing surfaces temperatures and the thermal comfort level, while the computational fluid dynamics model evaluates the airflow around the occupants. The air distribution index, that was developed in the last years for uniform environments, has been extended and implemented for non-uniform thermal environments. The airflow inside a virtual chamber equipped with two occupants seated in a classroom desk, is promoted by a mixing ventilation system with supply air of 28 °C and by a cold radiant floor with a surface temperature of 19 °C. The mechanical mixing ventilation system uses a supply and an exhaust diffusers located above the head level on adjacent walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • ANSI/ASHRAE Standard 55 (2010). Thermal Environmental Conditions for Human Occupancy. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers.

    Google Scholar 

  • ANSI/ASHRAE Standard 62.1 (2004). ASHRAE Standard—Ventilation for acceptable indoor air quality. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers.

    Google Scholar 

  • Awbi HB (2003). Ventilation of Buildings, 2nd edn. London: Taylor & Francis.

    Google Scholar 

  • Cho Y, Awbi HB, Karimipanah T (2002). A comparison between four different ventilation systems. In: Proceedings of the 8th International Conference on Air Distribution in Rooms (Roomvent 2002) (pp. 181–184), Copenhagen, Denmark.

  • Cho Y, Awbi HB, Karimipanah T (2005). Comparison between wall confluent jets and displacement ventilation in aspects of the spreading ration on the floor. In: Proceedings of the 10th International Conference in Indoor Air Quality and Climate (Indoor Air 2005), Beijing, China.

  • Cho Y, Awbi HB, Marchetti M (2003). The variation of ventilation performance in relation to change in workstation location in a ventilated room. In: Proceedings of the 7th International Conference of Healthy Buildings (vol. 2, pp. 296–301), Singapore.

    Google Scholar 

  • Conceição EZE (1999). Avaliação de condições de conforto térmico: simulação numérica do sistema térmico do corpo humano e do vestuário. In: Proceedings of the CIAR’99—V Ibero and Inter-American Air Conditioning and Refrigeration Congress, Lisbon, Portugal.

  • Conceição EZE, Lúcio MMJR (2001). Numerical and subjective responses of human thermal sensation. In: Proceedings of the BioEng 2001—Sixth Portuguese Conference on Biomedical Engineering, Faro, Portugal. (in Portuguese)

  • Conceição EZE, Lúcio MMJR (2003). Trocas de calor radiativo entre os ocupantes e as superfícies envolventes de compartimentos com topologia complexa. In: Proceedings of the VI Congresso Ibero-Americano de Engenharia Mecanica (pp. 1409–1414), Coimbra, Portugal. (in Portuguese)

  • Conceição EZE, Lúcio MMJR (2010). Numerical simulation of passive and active solar strategies in buildings with complex topology. Building Simulation, 3: 245–261.

    Article  Google Scholar 

  • Conceição EZE, Lúcio MMJR (2011). Evaluation of thermal comfort conditions in a classroom equipped with cooling radiant systems and subjected to uniform convective environment. Applied Mathematical Modelling, 35: 1292–1305.

    Article  MATH  Google Scholar 

  • Conceição EZE, Lúcio MMJR, Capela TL, Brito AIPV (2006). Evaluation of thermal comfort in slightly warm ventilated spaces in non-uniform environments. International Journal of Heating, Ventilating, Air-Conditioning and Refrigerating Research, 12: 451–458.

    Google Scholar 

  • Conceição EZE, Lúcio MMJR, Rosa SP, Custódio ALV, Andrade RL, Meira MJPA (2010). Evaluation of comfort level in desks equipped with two personalized ventilation systems in slightly warm environments. Building and Environment, 45: 601–609.

    Article  Google Scholar 

  • Conceição EZE, Vicente VDSR, Lúcio MMJR (2008). Airflow inside school buildings office compartments with moderate environment. International Journal on Heating Air Conditioning and Refrigerating Research, 14: 195–207.

    Google Scholar 

  • de Dear RJ, Ring, JW, Fanger, PO (1993). Thermal sensations resulting from sudden ambient temperature changes. Indoor Air, 3: 181–192.

    Article  Google Scholar 

  • Decreto-Lei no 79 (2006). Regulamento dos sistemas energéticos de climatização em edifícios (RSECE). Diário da República. I Série-A, N. 67, April 4th. (in Portuguese)

  • Fanger PO (1970). Thermal Comfort Analysis and Applications in Environmental Engineering. New York: McGraw-Hill Book Co.

    Google Scholar 

  • Fanger PO (1988). Introduction of the Olf and Decipol units to quantify air pollution perceived by humans indoors and outdoors. Energy and Buildings, 12: 1–6.

    Article  Google Scholar 

  • Gau N, Niu J, Zang H (2006). Coupling CFD and Human body thermoregulation model for the assessment of personalized ventilation. International Journal of Heating, Ventilating, Air-Conditioning and Refrigerating Research, 12: 497–518.

    Google Scholar 

  • ISO 7730 (2005). Ergonomics of the thermal environment—Analytical determination and interpretation of thermal comfort using cal-culation of the PMV and PPD indices and local thermal comfort criteria. International Standard Organization, Geneva, Switzerland.

    Google Scholar 

  • Karimipanah T, Awbi HB, Sandberg M, Blomqvist C (2007). Investigation of air quality, comfort parameters and effectiveness for two floor-level air supply systems in classrooms. Building and Environment, 42: 647–655.

    Article  Google Scholar 

  • Miyanaga T, Nakamo Y (1998). Analysis of thermal sensation in a radiant cooled room by modified PMV. In: Proceedings of the 6th International Conference on Air Distribution in Rooms (Roomvent 1998) (vol. 2, pp. 125–131), Stockholm, Sweden.

    Google Scholar 

  • Omni O, Tenabe S (2007). Coupled simulation of convection-radiation-thermoregulation for predicting human thermal sensation. In: Proceedings of the 10th International Conference on Air Distribution in Rooms (Roomvent 2007), Helsinki, Finland.

  • Patankar SV (1980). Numerical Heat Transfer and Fluid Flow. New York: Taylor & Francis.

    MATH  Google Scholar 

  • Sandberg M (1981). What is ventilation efficiency? Building and Environment, 16: 123–135.

    Article  Google Scholar 

  • Stolwijk JAJ (1970). Mathematical model of thermoregulation. In: Hardy JD, Gagge AP, Stolwijk JAJ (eds), Physiological and Behavioural Temperature Regulation (pp. 703–721). Springfield, IL, USA: Thomas Publishers.

    Google Scholar 

  • Zhu S, Kato S, Ooka R, Sakoi T, Tsuzuki K (2007). Coupled simulation method of convection, radiation, moisture transport and Sakoi’s Human thermal physiological model to simulate heat exchange from a person seated in a uniform environment. In: Proceedings of the 10th International Conference on Air Distribution in Rooms (Roomvent 2007), Helsinki, Finland.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eusébio Z. E. Conceição.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conceição, E.Z.E., Lúcio, M.M.J.R. & Awbi, H.B. Comfort and airflow evaluation in spaces equipped with mixing ventilation and cold radiant floor. Build. Simul. 6, 51–67 (2013). https://doi.org/10.1007/s12273-012-0093-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12273-012-0093-4

Keywords

Navigation