Building Simulation

, Volume 5, Issue 3, pp 203–217 | Cite as

A simulation methodology for heat and cold distribution in thermo-hydronic networks

Research Article Building Systems and Components

Abstract

This paper presents a simulation methodology to analyze hydronic heat distribution systems in a fast and user friendly way. As suggested in its name, the “Base Circuit Methodology” (BCM) is based on the observation that thermo-hydronic networks can be built up as a modular composition of elementary “Base Circuits” (BCs). Once the hydronic and thermodynamic behavior of such basic components is described in a set of dedicated equations, complex thermal distribution networks can easily be modeled by connecting the basic sub models. In addition to control performance simulations (accuracy, stability, speed) the BCM puts extra effort into energy efficiency analysis. In fact, every BC is a local sub unit in which heat flows are gathered, divided or changed in terms of temperature and/or flow. Therefore the BCM model setup yields the opportunity to analyze the net heat transport and its adaptations while crossing the network. Doing so, system designers get the efficiency variables more structured, leading to straightforward abilities to optimize heat and cold distribution. Practical examples prove the benefits of the methodology. Moreover, a test installation was built in which flows, pressures, and temperatures are confronted with the simulation results. The simulations are processed by means of the iterative equation solver EES (Engineering Equation Solver; ©F-chart) which has been experienced as a very compliant software package. As a result the methodology is delivered as a validated and open source library.

Keywords

hydronic system heating system HVAC simulation Engineering Equation Solver (EES) open header 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babiak J, Olesen BW, Pétráš D (2007). Low temperature heating and high temperature cooling, REHVA Guidebook 7.Google Scholar
  2. Fraisse G, Viardot C, Lafabrie O, Achard G (2002). Development of a simplified and accurate building model based on electrical analogy. Energy and Buildings, 34: 1017–1031.CrossRefGoogle Scholar
  3. Gamberi M, Manzini R, Regattieri A (2009). Simulink. simulator for building hydronic heating systems using the Newton-Raphson algorithm. Energy and Buildings, 41: 848–855.Google Scholar
  4. IEA ECBCS, Annex 10 (1982–1987). International Energy Agency, System Simulation.Google Scholar
  5. IEA ECBCS, Annex 49 (2006–2009). International Energy Agency, Midterm Report, Low Exergy Systems for High-Performance Buildings and Communities, Germany.Google Scholar
  6. ISSO publicatie 44 (1998). Ontwerp van hydraulische schakelingen voor verwarmen, Instituut voor studie en stimulering van onderzoek op het gebied van gebouwinstallaties, Nederland. (in Dutch)Google Scholar
  7. ISSO publication 47 (2005). Ontwerp van hydraulische schakelingen voor koelen, Instituut voor studie en stimulering van onderzoek op het gebied van gebouwinstallaties, Nederland. (in Dutch)Google Scholar
  8. Klein SA (2008). EES: Engineering Equation Solver, User manual. USAF-chart software. Madison, WI: University of Wisconsin.Google Scholar
  9. Laret L (1981). Contribution au développement des modèles mathématiques du comportement thermique transitoire de structures d’habitation. PhD thesis, University of Liège. (in French)Google Scholar
  10. Masy G (2008). Definition and validation of a simplified multizone dynamic building model connected to heating system and HVAC unit. PhD thesis, University of Liège.Google Scholar
  11. McGee TD (1988). Principles and Methods of Temperature Measurement. New York: John Wiley & Sons.Google Scholar
  12. Petitjean R (1994). L’équilibrage hydraulique global, Un manuel pour la conception des circuits hydrauliques et la détection des anomalies dans les installations de chauffage et de conditionnement d’air, Tour & Andersson AB. (in French)Google Scholar
  13. Potter MC, Wiggert DC (2002). Mechanics of Fluids, 3rd edn. Pacific Grove, CA: Brooks Cole & Wadsworth Group.Google Scholar
  14. Vandenbulcke R, Mertens L (2011). A simulation assisted design tool for boiler room hydronics. In: Proceedings of Building Simulation 2011, IBPSA (pp. 2140–2147), Sydney, Australia.Google Scholar
  15. VDI/VDE2173 (2007). Strömungstechnische Kenngrössen von Stellventilen und deren Bestimmung, Verein Deutscher Ingenieure. (in German)Google Scholar
  16. Werdin H (2004). Ein Beitrag zur modellbasierten Inbetriebnahme und Fehlererkennung von heizungs- und raumlufttechnischen Anlagen. PhD thesis, University of Dresden, Der Andere Verlag Osnabrück. (in German)Google Scholar
  17. Xu B, Fu L, Di H (2008). Dynamic simulation of space heating systems with radiators controlled by TRVs in buildings. Energy and Buildings, 40: 1755–1764.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Applied EngineeringKarel de Grote University CollegeAntwerpBelgium

Personalised recommendations