Skip to main content
Log in

Sestrin2 induction contributes to anti-inflammatory responses and cell survival by globular adiponectin in macrophages

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Adiponectin, an adipose tissue-derived hormone, exhibits a modulatory effect on cell death/survival and possesses potent anti-inflammatory properties. However, the underlying molecular mechanisms remain elusive. Sestrin2, a stress-inducible metabolic protein, has shown cytoprotective and inflammation-modulatory effects under stressful conditions. In this study, we examined the role of sestrin2 signaling in the modulation of cell survival and inflammatory responses by globular adiponectin (gAcrp) in macrophages. We observed that gAcrp induced a significant increase in sestrin2 expression in both RAW 264.7 murine macrophages and primary murine macrophages. Notably, gAcrp treatment markedly increased expression of hypoxia inducible factor-1 α (HIF-1α) and gene silencing of HIF-1α blocked sestrin2 induction by gAcrp. In addition, pretreatment with a pharmacological inhibitor of ERK or PI3K abrogated both sestrin2 and HIF-1α expression by gAcrp, indicating that ERK/PI3K-mediated HIF-1α signaling pathway plays a critical role in sestrin2 induction by gAcrp. Furthermore, sestrin2 induction is implicated in autophagy activation, and knockdown of sestrin2 prevented enhanced cell viability by gAcrp. Moreover, gene silencing of sestrin2 caused restoration of gAcrp-induced expression of anti-inflammatory genes in a gene-selective manner. Taken together, these results indicate that sestrin2 induction critically contributes to cell survival and anti-inflammatory responses by gAcrp in macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y (1999) Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 257:79–83

    Article  CAS  PubMed  Google Scholar 

  • Berg AH, Combs TP, Du X, Brownlee M, Scherer PE (2001) The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 7:947–953

    Article  CAS  PubMed  Google Scholar 

  • Budanov AV, Karin M (2008) p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134:451–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai D, Wang G, Zhou Z, Yang H, Yu Z (2015) Insulin increases sestrin 2 content by reducing its degradation through the PI 3 K/mTOR signaling pathway. Int J Endocrinol 2015:505849

  • Chen T, Li T, Wang J (2019) p53 mediates PEDF-induced autophagy in human umbilical vein endothelial cells through sestrin2 signaling. Mol Med Rep 20:1443–1450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coelho M, Oliveira T, Fernandes R (2013) Biochemistry of adipose tissue: an endocrine organ. AMS 9:191–200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dalamaga M, Diakopoulos KN, Mantzoros CS (2012) The role of adiponectin in cancer: a review of current evidence. Endocr Rev 33:547–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng Y, Scherer PE (2010) Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann N Y Acad Sci 1212:E1–E19

    Article  PubMed  PubMed Central  Google Scholar 

  • Essler S, Dehne N, Brüne B (2009) Role of sestrin2 in peroxide signaling in macrophages. FEBS Lett 583:3531–5

    Article  CAS  PubMed  Google Scholar 

  • Fantuzzi G (2013) Adiponectin in inflammatory and immune-mediated diseases. Cytokine 64:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funes SC, Rios M, Escobar-Vera J, Kalergis AM (2018) Implications of macrophage polarization in autoimmunity. Immunology 154:186–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221:3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebbard L, Ranscht B (2014) Multifaceted roles of adiponectin in cancer. Best practice & research. Clin Endocrinol Metab 28:59–69

    CAS  Google Scholar 

  • Ho A, Cho CS, Namkoong S, Cho US, Lee JH (2016) Biochemical basis of sestrin physiological activities. Trends Biochem Sci 41:621–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu HJ, Shi ZY, Lin XL, Chen SM, Wang QY, Tang SY (2015) Upregulation of Sestrin2 expression protects against macrophage apoptosis induced by oxidized low-density lipoprotein. DNA Cell Biol 34:296–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hui X, Gu P, Zhang J, Nie T, Pan Y, Wu D, Feng T, Zhong C, Wang Y, Lam KS, Xu A (2015) Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell Metabol 22:279–290

    Article  CAS  Google Scholar 

  • Hwang HJ, Jung TW, Choi JH, Lee HJ, Chung HS, Seo JA, Kim SG, Kim NH, Choi KM, Choi DS, Baik SH, Yoo HJ (2017) Knockdown of sestrin2 increases pro-inflammatory reactions and ER stress in the endothelium via an AMPK dependent mechanism. Biochim Biophys Acta Mol Basis Dis 1863:1436–1444

    Article  CAS  PubMed  Google Scholar 

  • Hwang HJ, Kim JW, Chung HS, Seo JA, Kim SG, Kim NH, Choi KM, Baik SH, Yoo HJ (2018) Knockdown of sestrin2 increases lipopolysaccharide-induced oxidative stress, apoptosis, and fibrotic reactions in H9c2 cells and heart tissues of mice via an AMPK-dependent mechanism. Mediat Inflamm 2018:6209140

  • Ishtiaq SM, Rashid H, Hussain Z, Arshad MI, Khan JA (2019) Adiponectin and PPAR: a setup for intricate crosstalk between obesity and non-alcoholic fatty liver disease. Rev Endocr Metab Disord 20:253–261

    Article  CAS  PubMed  Google Scholar 

  • Jian M, Kwan JS, Bunting M, Ng RC, Chan KH (2019) Adiponectin suppresses amyloid-β oligomer (AβO)-induced inflammatory response of microglia via AdipoR1-AMPK-NF-κB signaling pathway. J Neuroinflamm 16:110

    Article  Google Scholar 

  • Kim KH, Lee MS (2014) Autophagy—a key player in cellular and body metabolism. Nat Rev Endocrinol 10:322–337

    Article  CAS  PubMed  Google Scholar 

  • Kim H, An S, Ro SH, Teixeira F, Park GJ, Kim C, Cho CS, Kim JS, Jakob U, Lee JH, Cho US (2015a) Janus-faced Sestrin2 controls ROS and mTOR signalling through two separate functional domains. Nat Commun 6:10025

    Article  CAS  PubMed  Google Scholar 

  • Kim MG, Yang JH, Kim KM, Jang CH, Jung JY, Cho IJ, Shin SM, Ki SH (2015b) Regulation of Toll-like receptor-mediated Sestrin2 induction by AP-1, Nrf2, and the ubiquitin-proteasome system in macrophages. Toxicol Sci 144:425–435

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Bae SH, Ryu JC, Kwon Y, Oh JH, Kwon J, Moon JS, Kim K, Miyawaki A, Lee MG, Shin J, Kim YS, Kim CH, Ryter SW, Choi AM, Rhee SG, Ryu JH, Yoon JH (2016) SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy 12:1272–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SJ, Kim KM, Yang JH, Cho SS, Kim JY, Park SJ, Lee SK, Ku SK, Cho IJ, Ki SH (2017) Sestrin2 protects against acetaminophen-induced liver injury. Chem Biol Interact 269:50–58

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Kowalsky AH, Lee JH (2021) Sestrins in physiological stress responses. Annu Rev Physiol 83:381–403

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Budanov AV, Park EJ, Birse R, Kim TE, Perkins GA, Ocorr K, Ellisman MH, Bodmer R, Bier E, Karin M (2010) Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies, vol 327. Science, New York, pp 1223–1228

    Google Scholar 

  • Li H, Liu S, Yuan H, Niu Y, Fu L (2017) Sestrin 2 induces autophagy and attenuates insulin resistance by regulating AMPK signaling in C2C12 myotubes. Exp Cell Res 354:18–24

    Article  CAS  PubMed  Google Scholar 

  • Libby EF, Frost AR, Demark-Wahnefried W, Hurst DR (2014) Linking adiponectin and autophagy in the regulation of breast cancer metastasis. J Mol Med 92:1015–1023

    Article  CAS  PubMed  Google Scholar 

  • Maiuri MC, Malik SA, Morselli E, Kepp O, Criollo A, Mouchel PL, Carnuccio R, Kroemer G (2009) Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle (Georgetown. Tex) 8:1571–1576

    CAS  Google Scholar 

  • Mandal P, Pratt BT, Barnes M, Mcmullen MR, Nagy LE (2011) Molecular mechanism for adiponectin-dependent M2 macrophage polarization: link between the metabolic and innate immune activity of full-length adiponectin. J Biol Chem 286:13460–13469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh HJ, Lee S, Park PH (2020) ER stress contributes to autophagy induction by adiponectin in macrophages: Implication in cell survival and suppression of inflammatory response. Cytokine 127:154959

    Article  CAS  PubMed  Google Scholar 

  • Ohashi K, Parker JL, Ouchi N, Higuchi A, Vita JA, Gokce N, Pedersen AA, Kalthoff C, Tullin S, Sams A, Summer R, Walsh K (2010) Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J Biol Chem 285:6153–6160

    Article  CAS  PubMed  Google Scholar 

  • Osei K, Gaillard T, Schuster D (2005) Plasma adiponectin levels in high risk African-Americans with normal glucose tolerance, impaired glucose tolerance, and type 2 diabetes. Obes Res 13:179–185

    Article  CAS  PubMed  Google Scholar 

  • Ouchi N, Walsh K (2007) Adiponectin as an anti-inflammatory factor. Clin Chim Acta 380:24–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouchi N, Parker JL, Lugus JJ, Walsh K (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11:85–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan C, Chen Z, Li C, Han T, Liu H, Wang X (2021) Sestrin2 as a gatekeeper of cellular homeostasis: physiological effects for the regulation of hypoxia-related diseases. J Cell Mol Med 25:5341–5350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park PH (2018) Autophagy induction: a critical event for the modulation of cell death/survival and inflammatory responses by adipokines. Arch Pharm Res 41:1062–1073

    Article  CAS  PubMed  Google Scholar 

  • Pasha M, Eid AH, Eid AA, Gorin Y, Munusamy S (2017) Sestrin2 as a novel biomarker and therapeutic target for various diseases. Oxid Med Cell Longev 2017:3296294

  • Pham DV, Park PH (2020) Recent insights on modulation of inflammasomes by adipokines: a critical event for the pathogenesis of obesity and metabolism-associated diseases. Arch Pharm Res 43:997–1016

    Article  CAS  PubMed  Google Scholar 

  • Pham DV, Tilija Pun N, Park PH (2021) Autophagy activation and SREBP-1 induction contribute to fatty acid metabolic reprogramming by leptin in breast cancer cells. Mol Oncol 15:657–678

    Article  CAS  PubMed  Google Scholar 

  • Pun NT, Subedi A, Kim MJ, Park PH (2015) Globular adiponectin causes tolerance to LPS-induced TNF-α expression via autophagy induction in RAW 264.7 macrophages: involvement of SIRT1/FoxO3A axis. PLoS ONE 10:e0124636

    Article  PubMed  Google Scholar 

  • Raut PK, Park PH (2020) Globular adiponectin antagonizes leptin-induced growth of cancer cells by modulating inflammasomes activation: critical role of HO-1 signaling. Biochem Pharmacol 180:114186

    Article  CAS  PubMed  Google Scholar 

  • Raut PK, Kim SH, Choi DY, Jeong GS, Park PH (2019) Growth of breast cancer cells by leptin is mediated via activation of the inflammasome: critical roles of estrogen receptor signaling and reactive oxygen species production. Biochem Pharmacol 161:73–88

    Article  CAS  PubMed  Google Scholar 

  • Ren D, Quan N, Fedorova J, Zhang J, He Z, Li J (2020) Sestrin2 modulates cardiac inflammatory response through maintaining redox homeostasis during ischemia and reperfusion. Redox Biol 34:101556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo K, Seo S, Ki SH, Shin SM (2016) Compound C increases sestrin2 expression via mitochondria-dependent ROS production. Biol Pharm Bull 39:799–806

    Article  CAS  PubMed  Google Scholar 

  • Sepilian V, Nagamani M (2005) Adiponectin levels in women with polycystic ovary syndrome and severe insulin resistance. J Soc Gynecol Investig 12:129–134

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Doycheva DM, Xu L, Tang J, Yan M, Zhang JH (2016) Sestrin2 induced by hypoxia inducible factor1 alpha protects the blood-brain barrier via inhibiting VEGF after severe hypoxic-ischemic injury in neonatal rats. Neurobiol Dis 95:111–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi X, Xu L, Doycheva DM, Tang J, Yan M, Zhang JH (2017) Sestrin2, as a negative feedback regulator of mTOR, provides neuroprotection by activation AMPK phosphorylation in neonatal hypoxic-ischemic encephalopathy in rat pups. J Cereb Blood Flow Metab 37:1447–1460

    Article  CAS  PubMed  Google Scholar 

  • Shin BY, Jin SH, Cho IJ, Ki SH (2012) Nrf2-ARE pathway regulates induction of Sestrin-2 expression. Free Radic Biol Med 53:834–841

    Article  CAS  PubMed  Google Scholar 

  • Shrestha A, Pun NT, Park PH (2018) ZFP36L1 and AUF1 induction contribute to the suppression of inflammatory mediators expression by globular adiponectin via autophagy induction in macrophages. Biomol Therap 26:446–457

    Article  CAS  Google Scholar 

  • Stern JH, Rutkowski JM, Scherer PE (2016) Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metabol 23:770–784

    Article  CAS  Google Scholar 

  • Tilija Pun N, Park PH (2018) Adiponectin inhibits inflammatory cytokines production by Beclin-1 phosphorylation and B-cell lymphoma 2 mRNA destabilization: role for autophagy induction. Br J Pharmacol 175:1066–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai YW, Fu SH, Dong JL, Chien MW, Liu YW, Hsu CY, Sytwu HK (2020) Adipokine-modulated immunological homeostasis shapes the pathophysiology of inflammatory bowel disease. Int J Mol Sci 21

  • Wang LX, Zhu XM, Yao YM (2019a) Sestrin2: its potential role and regulatory mechanism in host immune response in diseases. Front Immunol 10:2797

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Bu L, Yang P, Feng S, Xu F (2019b) Alleviation of sepsis-induced cardiac dysfunction by overexpression of Sestrin2 is associated with inhibition of p-S6K and activation of the p-AMPK pathway. Mol Med Rep 20:2511–2518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf AM, Wolf D, Rumpold H, Enrich B, Tilg H (2004) Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem Biophys Res Commun 323:630–5

    Article  CAS  PubMed  Google Scholar 

  • Wulster-Radcliffe MC, Ajuwon KM, Wang J, Christian JA, Spurlock ME (2004) Adiponectin differentially regulates cytokines in porcine macrophages. Biochem Biophys Res Commun 316:924–9

    Article  CAS  PubMed  Google Scholar 

  • Yanai H, Yoshida H (2019) Beneficial effects of adiponectin on glucose and lipid metabolism and atherosclerotic progression: mechanisms and perspectives. Int J Mol Sci 20

  • Yang JH, Kim KM, Kim MG, Seo KH, Han JY, Ka SO, Park BH, Shin SM, Ku SK, Cho IJ, Ki SH (2015) Role of sestrin2 in the regulation of proinflammatory signaling in macrophages. Free Radic Biol Med 78:156–167

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Xu C, Zhang Y, He S, Li D (2017) Sestrin2 suppresses classically activated macrophages-mediated inflammatory response in myocardial infarction through inhibition of mTORC1 signaling. Front Immunol 8:728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi L, Li F, Yong Y, Jianting D, Liting Z, Xuansheng H, Fei L, Jiewen L (2014) Upregulation of sestrin-2 expression protects against endothelial toxicity of angiotensin II. Cell Biol Toxicol 30:147–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang XY, Wu XQ, Deng R, Sun T, Feng GK, Zhu XF (2013) Upregulation of sestrin 2 expression via JNK pathway activation contributes to autophagy induction in cancer cells. Cell Signal 25:150–158

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2021R1A2C1013132) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A1A03044512). The authors thank the Core Research Support Center for Natural Products and Medical Materials (CRCNM) for the technical support regarding the confocal microscopic analysis.

Author information

Authors and Affiliations

Authors

Contributions

PHP; designed the study. SL and DP; performed the experiments. PHP, SL, and DP; analyzed the data. PHP and SL; wrote the manuscript.

Corresponding author

Correspondence to Pil-Hoon Park.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Pham, DV. & Park, PH. Sestrin2 induction contributes to anti-inflammatory responses and cell survival by globular adiponectin in macrophages. Arch. Pharm. Res. 45, 38–50 (2022). https://doi.org/10.1007/s12272-021-01364-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-021-01364-0

Keywords

Navigation