Skip to main content

Targeting fatty acid metabolism for fibrotic disorders

Abstract

Fibrosis is defined by abnormal accumulation of extracellular matrix, which can affect virtually every organ system under diseased conditions. Fibrotic tissue remodeling often leads to organ dysfunction and is highly associated with increased morbidity and mortality. The disease burden caused by fibrosis is substantial, and the medical need for effective antifibrotic therapies is essential. Significant progress has been made in understanding the molecular mechanism and pathobiology of fibrosis, such as transforming growth factor-β (TGF-β)-mediated signaling pathways. However, owing to the complex and dynamic properties of fibrotic disorders, there are currently no therapeutic options that can prevent or reverse fibrosis. Recent studies have revealed that alterations in fatty acid metabolic processes are common mechanisms and core pathways that play a central role in different fibrotic disorders. Excessive lipid accumulation or defective fatty acid oxidation is associated with increased lipotoxicity, which directly contributes to the development of fibrosis. Genetic alterations or pharmacologic targeting of fatty acid metabolic processes have great potential for the inhibition of fibrosis development. Furthermore, mechanistic studies have revealed active interactions between altered metabolic processes and fibrosis development. Several well-known fibrotic factors change the lipid metabolic processes, while altered metabolic processes actively participate in fibrosis development. This review summarizes the recent evidence linking fatty acid metabolism and fibrosis, and provides new insights into the pathogenesis of fibrotic diseases for the development of drugs for fibrosis prevention and treatment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, Wakil SJ (2001) Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291:2613–2616. https://doi.org/10.1126/science.1056843

    CAS  Article  PubMed  Google Scholar 

  2. Agassandian M, Mallampalli RK (2013) Surfactant phospholipid metabolism. Biochim Biophys Acta 1831:612–625. https://doi.org/10.1016/j.bbalip.2012.09.010

    CAS  Article  PubMed  Google Scholar 

  3. Ahn SB, Jang K, Jun DW, Lee BH, Shin KJ (2014) Expression of liver X receptor correlates with intrahepatic inflammation and fibrosis in patients with nonalcoholic fatty liver disease. Dig Dis Sci 59:2975–2982. https://doi.org/10.1007/s10620-014-3289-x

    CAS  Article  PubMed  Google Scholar 

  4. Avouac J, Konstantinova I, Guignabert C, Pezet S, Sadoine J, Guilbert T, Cauvet A, Tu L, Luccarini JM, Junien JL, Broqua P, Allanore Y (2017) Pan-PPAR agonist IVA337 is effective in experimental lung fibrosis and pulmonary hypertension. Ann Rheum Dis 76:1931–1940. https://doi.org/10.1136/annrheumdis-2016-210821

    CAS  Article  PubMed  Google Scholar 

  5. Bates J, Vijayakumar A, Ghoshal S, Marchand B, Yi S, Kornyeyev D, Zagorska A, Hollenback D, Walker K, Liu K, Pendem S, Newstrom D, Brockett R, Mikaelian I, Kusam S, Ramirez R, Lopez D, Li L, Fuchs BC, Breckenridge DG (2020) Acetyl-CoA carboxylase inhibition disrupts metabolic reprogramming during hepatic stellate cell activation. J Hepatol 73:896–905. https://doi.org/10.1016/j.jhep.2020.04.037

    CAS  Article  PubMed  Google Scholar 

  6. Beaven SW, Wroblewski K, Wang J, Hong C, Bensinger S, Tsukamoto H, Tontonoz P (2011) Liver X receptor signaling is a determinant of stellate cell activation and susceptibility to fibrotic liver disease. Gastroenterology 140:1052–1062. https://doi.org/10.1053/j.gastro.2010.11.053

    CAS  Article  PubMed  Google Scholar 

  7. Beaven SW, Matveyenko A, Wroblewski K, Chao L, Wilpitz D, Hsu TW, Lentz J, Drew B, Hevener AL, Tontonoz P (2013) Reciprocal regulation of hepatic and adipose lipogenesis by liver X receptors in obesity and insulin resistance. Cell Metab 18:106–117. https://doi.org/10.1016/j.cmet.2013.04.021

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Bechmann LP, Hannivoort RA, Gerken G, Hotamisligil GS, Trauner M, Canbay A (2012) The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol 56:952–964. https://doi.org/10.1016/j.jhep.2011.08.025

    CAS  Article  PubMed  Google Scholar 

  9. Bobowski-Gerard M, Zummo FP, Staels B, Lefebvre P, Eeckhoute J (2018) Retinoids issued from hepatic stellate cell lipid droplet loss as potential signaling molecules orchestrating a multicellular liver injury response. Cells. https://doi.org/10.3390/cells7090137

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bobulescu IA (2010) Renal lipid metabolism and lipotoxicity. Curr Opin Nephrol Hypertens 19:393–402. https://doi.org/10.1097/MNH.0b013e32833aa4ac

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Braga TT, Agudelo JS, Camara NO (2015) Macrophages during the fibrotic process: M2 as friend and foe. Front Immunol 6:602. https://doi.org/10.3389/fimmu.2015.00602

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Bril F, Kalavalapalli S, Clark VC, Lomonaco R, Soldevila-Pico C, Liu IC, Orsak B, Tio F, Cusi K (2018) Response to pioglitazone in patients with nonalcoholic steatohepatitis with vs without type 2 diabetes. Clin Gastroenterol Hepatol 16:558-566.e2. https://doi.org/10.1016/j.cgh.2017.12.001

    CAS  Article  PubMed  Google Scholar 

  13. Bulbul MC, Dagel T, Afsar B, Ulusu NN, Kuwabara M, Covic A, Kanbay M (2018) Disorders of lipid metabolism in chronic kidney disease. Blood Purif 46:144–152. https://doi.org/10.1159/000488816

    CAS  Article  PubMed  Google Scholar 

  14. Burgess HA, Daugherty LE, Thatcher TH, Lakatos HF, Ray DM, Redonnet M, Phipps RP, Sime PJ (2005) PPARgamma agonists inhibit TGF-beta induced pulmonary myofibroblast differentiation and collagen production: implications for therapy of lung fibrosis. Am J Physiol Lung Cell Mol Physiol 288:L1146–L1153. https://doi.org/10.1152/ajplung.00383.2004

    CAS  Article  PubMed  Google Scholar 

  15. Chang ML, Yang SS (2019) Metabolic signature of hepatic fibrosis: from individual pathways to systems biology. Cells. https://doi.org/10.3390/cells8111423

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen G, Wang T, Uttarwar L, Vankrieken R, Li R, Chen X, Gao B, Ghayur A, Margetts P, Krepinsky JC (2014) SREBP-1 is a novel mediator of TGFbeta1 signaling in mesangial cells. J Mol Cell Biol 6:516–530. https://doi.org/10.1093/jmcb/mju041

    CAS  Article  PubMed  Google Scholar 

  17. Chen Y, Yan Q, Lv M, Song K, Dai Y, Huang Y, Zhang L, Zhang C, Gao H (2020) Involvement of FATP2-mediated tubular lipid metabolic reprogramming in renal fibrogenesis. Cell Death Dis 11:994. https://doi.org/10.1038/s41419-020-03199-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Cheng L, Ding G, Qin Q, Huang Y, Lewis W, He N, Evans RM, Schneider MD, Brako FA, Xiao Y, Chen YE, Yang Q (2004) Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med 10:1245–1250. https://doi.org/10.1038/nm1116

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Chiu HC, Kovacs A, Ford DA, Hsu FF, Garcia R, Herrero P, Saffitz JE, Schaffer JE (2001) A novel mouse model of lipotoxic cardiomyopathy. J Clin Invest 107:813–822. https://doi.org/10.1172/JCI10947

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Chiu HC, Kovacs A, Blanton RM, Han X, Courtois M, Weinheimer CJ, Yamada KA, Brunet S, Xu H, Nerbonne JM, Welch MJ, Fettig NM, Sharp TL, Sambandam N, Olson KM, Ory DS, Schaffer JE (2005) Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic cardiomyopathy. Circ Res 96:225–233. https://doi.org/10.1161/01.RES.0000154079.20681.B9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Chu SG, Villalba JA, Liang X, Xiong K, Tsoyi K, Ith B, Ayaub EA, Tatituri RV, Byers DE, Hsu FF, El-Chemaly S, Kim EY, Shi Y, Rosas IO (2019) Palmitic acid-rich high-fat diet exacerbates experimental pulmonary fibrosis by modulating endoplasmic reticulum stress. Am J Respir Cell Mol Biol 61:737–746. https://doi.org/10.1165/rcmb.2018-0324OC

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Chung KW, Lee EK, Lee MK, Oh GT, Yu BP, Chung HY (2018) Impairment of PPARalpha and the fatty acid oxidation pathway aggravates renal fibrosis during aging. J Am Soc Nephrol 29:1223–1237. https://doi.org/10.1681/ASN.2017070802

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Chung KP, Hsu CL, Fan LC, Huang Z, Bhatia D, Chen YJ, Hisata S, Cho SJ, Nakahira K, Imamura M, Choi ME, Yu CJ, Cloonan SM, Choi AMK (2019) Mitofusins regulate lipid metabolism to mediate the development of lung fibrosis. Nat Commun 10:3390. https://doi.org/10.1038/s41467-019-11327-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Chung KW, Ha S, Kim SM, Kim DH, An HJ, Lee EK, Moon HR, Chung HY (2020) PPARalpha/beta activation alleviates age-associated renal fibrosis in sprague dawley rats. J Gerontol A Biol Sci Med Sci 75:452–458. https://doi.org/10.1093/gerona/glz083

    CAS  Article  PubMed  Google Scholar 

  25. Davis BH, Kramer RT, Davidson NO (1990) Retinoic acid modulates rat Ito cell proliferation, collagen, and transforming growth factor beta production. J Clin Invest 86:2062–2070. https://doi.org/10.1172/JCI114943

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Del Campo JA, Gallego P, Grande L (2018) Role of inflammatory response in liver diseases: therapeutic strategies. World J Hepatol 10:1–7. https://doi.org/10.4254/wjh.v10.i1.1

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dhillon P, Park J, Hurtado Del Pozo C, Li L, Doke T, Huang S, Zhao J, Kang HM, Shrestra R, Balzer MS, Chatterjee S, Prado P, Han SY, Liu H, Sheng X, Dierickx P, Batmanov K, Romero JP, Prosper F, Li M, Pei L, Kim J, Montserrat N, Susztak K (2021) The nuclear receptor ESRRA protects from kidney disease by coupling metabolism and differentiation. Cell Metab 33:379-394.e8. https://doi.org/10.1016/j.cmet.2020.11.011

    CAS  Article  PubMed  Google Scholar 

  28. Distler JHW, Gyorfi AH, Ramanujam M, Whitfield ML, Konigshoff M, Lafyatis R (2019) Shared and distinct mechanisms of fibrosis. Nat Rev Rheumatol 15:705–730. https://doi.org/10.1038/s41584-019-0322-7

    CAS  Article  PubMed  Google Scholar 

  29. Djudjaj S, Boor P (2019) Cellular and molecular mechanisms of kidney fibrosis. Mol Aspects Med 65:16–36. https://doi.org/10.1016/j.mam.2018.06.002

    CAS  Article  PubMed  Google Scholar 

  30. Dorotea D, Koya D, Ha H (2020) Recent insights into SREBP as a direct mediator of kidney fibrosis via lipid-independent pathways. Front Pharmacol 11:265. https://doi.org/10.3389/fphar.2020.00265

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Duncan JG, Bharadwaj KG, Fong JL, Mitra R, Sambandam N, Courtois MR, Lavine KJ, Goldberg IJ, Kelly DP (2010) Rescue of cardiomyopathy in peroxisome proliferator-activated receptor-alpha transgenic mice by deletion of lipoprotein lipase identifies sources of cardiac lipids and peroxisome proliferator-activated receptor-alpha activators. Circulation 121:426–435. https://doi.org/10.1161/CIRCULATIONAHA.109.888735

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Dunham RM, Thapa M, Velazquez VM, Elrod EJ, Denning TL, Pulendran B, Grakoui A (2013) Hepatic stellate cells preferentially induce Foxp3+ regulatory T cells by production of retinoic acid. J Immunol 190:2009–2016. https://doi.org/10.4049/jimmunol.1201937

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Faghihzadeh F, Adibi P, Rafiei R, Hekmatdoost A (2014) Resveratrol supplementation improves inflammatory biomarkers in patients with nonalcoholic fatty liver disease. Nutr Res 34:837–843. https://doi.org/10.1016/j.nutres.2014.09.005

    CAS  Article  PubMed  Google Scholar 

  34. Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A, Han X, Gross RW, Kozak R, Lopaschuk GD, Kelly DP (2002) The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 109:121–130. https://doi.org/10.1172/JCI14080

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Finck BN, Han X, Courtois M, Aimond F, Nerbonne JM, Kovacs A, Gross RW, Kelly DP (2003) A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc Natl Acad Sci USA 100:1226–1231. https://doi.org/10.1073/pnas.0336724100

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Fu Y, Sun Y, Wang M, Hou Y, Huang W, Zhou D, Wang Z, Yang S, Tang W, Zhen J, Li Y, Wang X, Liu M, Zhang Y, Wang B, Liu G, Yu X, Sun J, Zhang C, Yi F (2020) Elevation of JAML promotes diabetic kidney disease by modulating podocyte lipid metabolism. Cell Metab 32:1052-1062.e8. https://doi.org/10.1016/j.cmet.2020.10.019

    CAS  Article  PubMed  Google Scholar 

  37. Galli A, Crabb DW, Ceni E, Salzano R, Mello T, Svegliati-Baroni G, Ridolfi F, Trozzi L, Surrenti C, Casini A (2002) Antidiabetic thiazolidinediones inhibit collagen synthesis and hepatic stellate cell activation in vivo and in vitro. Gastroenterology 122:1924–1940. https://doi.org/10.1053/gast.2002.33666

    CAS  Article  PubMed  Google Scholar 

  38. Genovese T, Mazzon E, Di Paola R, Muia C, Crisafulli C, Caputi AP, Cuzzocrea S (2005) Role of endogenous and exogenous ligands for the peroxisome proliferator-activated receptor alpha in the development of bleomycin-induced lung injury. Shock 24:547–555. https://doi.org/10.1097/01.shk.0000190825.28783.a4

    CAS  Article  PubMed  Google Scholar 

  39. Gibb AA, Lazaropoulos MP, Elrod JW (2020) Myofibroblasts and fibrosis: mitochondrial and metabolic control of cellular differentiation. Circ Res 127:427–447. https://doi.org/10.1161/CIRCRESAHA.120.316958

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Gieseck RL, Wilson MS, Wynn TA (2018) Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol 18:62–76. https://doi.org/10.1038/nri.2017.90

    CAS  Article  PubMed  Google Scholar 

  41. Haaker MW, Vaandrager AB, Helms JB (2020) Retinoids in health and disease: a role for hepatic stellate cells in affecting retinoid levels. Biochim Biophys Acta Mol Cell Biol Lipids 1865:158674. https://doi.org/10.1016/j.bbalip.2020.158674

    CAS  Article  PubMed  Google Scholar 

  42. Hamanaka RB, Mutlu GM (2021) Metabolic requirements of pulmonary fibrosis: role of fibroblast metabolism. FEBS J. https://doi.org/10.1111/febs.15693

    Article  PubMed  Google Scholar 

  43. Han S, Mallampalli RK (2015) The role of surfactant in lung disease and host defense against pulmonary infections. Ann Am Thorac Soc 12:765–774. https://doi.org/10.1513/AnnalsATS.201411-507FR

    Article  PubMed  PubMed Central  Google Scholar 

  44. Han SH, Malaga-Dieguez L, Chinga F, Kang HM, Tao J, Reidy K, Susztak K (2016) Deletion of Lkb1 in renal tubular epithelial cells leads to CKD by altering metabolism. J Am Soc Nephrol 27:439–453. https://doi.org/10.1681/ASN.2014121181

    CAS  Article  PubMed  Google Scholar 

  45. Han SH, Wu MY, Nam BY, Park JT, Yoo TH, Kang SW, Park J, Chinga F, Li SY, Susztak K (2017) PGC-1alpha protects from notch-induced kidney fibrosis development. J Am Soc Nephrol 28:3312–3322. https://doi.org/10.1681/ASN.2017020130

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Harayama T, Riezman H (2018) Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol 19:281–296. https://doi.org/10.1038/nrm.2017.138

    CAS  Article  PubMed  Google Scholar 

  47. Henderson J, O’reilly S (2021) The emerging role of metabolism in fibrosis. Trends Endocrinol Metab 32:639–653. https://doi.org/10.1016/j.tem.2021.05.003

    CAS  Article  PubMed  Google Scholar 

  48. Henderson NC, Rieder F, Wynn TA (2020) Fibrosis: from mechanisms to medicines. Nature 587:555–566. https://doi.org/10.1038/s41586-020-2938-9

    CAS  Article  PubMed  Google Scholar 

  49. Hewitson TD, Smith ER (2021) A metabolic reprogramming of glycolysis and glutamine metabolism is a requisite for renal fibrogenesis-why and how? Front Physiol 12:645857. https://doi.org/10.3389/fphys.2021.645857

    Article  PubMed  PubMed Central  Google Scholar 

  50. Honda Y, Kessoku T, Ogawa Y, Tomeno W, Imajo K, Fujita K, Yoneda M, Takizawa T, Saito S, Nagashima Y, Nakajima A (2017) Pemafibrate, a novel selective peroxisome proliferator-activated receptor alpha modulator, improves the pathogenesis in a rodent model of nonalcoholic steatohepatitis. Sci Rep 7:42477. https://doi.org/10.1038/srep42477

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Houten SM, Wanders RJ (2010) A general introduction to the biochemistry of mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis 33:469–477. https://doi.org/10.1007/s10545-010-9061-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Houten SM, Violante S, Ventura FV, Wanders RJ (2016) The biochemistry and physiology of mitochondrial fatty acid beta-oxidation and its genetic disorders. Annu Rev Physiol 78:23–44. https://doi.org/10.1146/annurev-physiol-021115-105045

    CAS  Article  PubMed  Google Scholar 

  53. Hu J, Zhang Z, Shen WJ, Azhar S (2010) Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr Metab (Lond) 7:47. https://doi.org/10.1186/1743-7075-7-47

    CAS  Article  Google Scholar 

  54. Huang P, Kaluba B, Jiang XL, Chang S, Tang XF, Mao LF, Zhang ZP, Huang FZ (2018) Liver X receptor inverse agonist SR9243 suppresses nonalcoholic steatohepatitis intrahepatic inflammation and fibrosis. Biomed Res Int 2018:8071093. https://doi.org/10.1155/2018/8071093

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Ihm SH, Chang K, Kim HY, Baek SH, Youn HJ, Seung KB, Kim JH (2010) Peroxisome proliferator-activated receptor-gamma activation attenuates cardiac fibrosis in type 2 diabetic rats: the effect of rosiglitazone on myocardial expression of receptor for advanced glycation end products and of connective tissue growth factor. Basic Res Cardiol 105:399–407. https://doi.org/10.1007/s00395-009-0071-x

    CAS  Article  PubMed  Google Scholar 

  56. Ioannou GN (2016) The role of cholesterol in the pathogenesis of NASH. Trends Endocrinol Metab 27:84–95. https://doi.org/10.1016/j.tem.2015.11.008

    CAS  Article  PubMed  Google Scholar 

  57. Ioannou GN, Haigh WG, Thorning D, Savard C (2013) Hepatic cholesterol crystals and crown-like structures distinguish NASH from simple steatosis. J Lipid Res 54:1326–1334. https://doi.org/10.1194/jlr.M034876

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Ioannou GN, Subramanian S, Chait A, Haigh WG, Yeh MM, Farrell GC, Lee SP, Savard C (2017) Cholesterol crystallization within hepatocyte lipid droplets and its role in murine NASH. J Lipid Res 58:1067–1079. https://doi.org/10.1194/jlr.M072454

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Ip E, Farrell G, Hall P, Robertson G, Leclercq I (2004) Administration of the potent PPARalpha agonist, Wy-14,643, reverses nutritional fibrosis and steatohepatitis in mice. Hepatology 39:1286–1296. https://doi.org/10.1002/hep.20170

    CAS  Article  PubMed  Google Scholar 

  60. Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P (2018) Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci 75:3313–3327. https://doi.org/10.1007/s00018-018-2860-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Iwaisako K, Haimerl M, Paik YH, Taura K, Kodama Y, Sirlin C, Yu E, Yu RT, Downes M, Evans RM, Brenner DA, Schnabl B (2012) Protection from liver fibrosis by a peroxisome proliferator-activated receptor delta agonist. Proc Natl Acad Sci USA 109:E1369–E1376. https://doi.org/10.1073/pnas.1202464109

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jiang T, Liebman SE, Lucia MS, Li J, Levi M (2005a) Role of altered renal lipid metabolism and the sterol regulatory element binding proteins in the pathogenesis of age-related renal disease. Kidney Int 68:2608–2620. https://doi.org/10.1111/j.1523-1755.2005.00733.x

    CAS  Article  PubMed  Google Scholar 

  63. Jiang T, Wang Z, Proctor G, Moskowitz S, Liebman SE, Rogers T, Lucia MS, Li J, Levi M (2005b) Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory element-binding protein-1c-dependent pathway. J Biol Chem 280:32317–32325. https://doi.org/10.1074/jbc.M500801200

    CAS  Article  PubMed  Google Scholar 

  64. Jucker BM, Doe CP, Schnackenberg CG, Olzinski AR, Maniscalco K, Williams C, Hu TC, Lenhard SC, Costell M, Bernard R, Sarov-Blat L, Steplewski K, Willette RN (2007) PPARdelta activation normalizes cardiac substrate metabolism and reduces right ventricular hypertrophy in congestive heart failure. J Cardiovasc Pharmacol 50:25–34. https://doi.org/10.1097/FJC.0b013e31804b4163

    CAS  Article  PubMed  Google Scholar 

  65. Jun JI, Lau LF (2018) Resolution of organ fibrosis. J Clin Invest 128:97–107. https://doi.org/10.1172/JCI93563

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jung MY, Kang JH, Hernandez DM, Yin X, Andrianifahanana M, Wang Y, Gonzalez-Guerrico A, Limper AH, Lupu R, Leof EB (2018) Fatty acid synthase is required for profibrotic TGF-beta signaling. FASEB J 32:3803–3815. https://doi.org/10.1096/fj.201701187R

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Kaimoto S, Hoshino A, Ariyoshi M, Okawa Y, Tateishi S, Ono K, Uchihashi M, Fukai K, Iwai-Kanai E, Matoba S (2017) Activation of PPAR-alpha in the early stage of heart failure maintained myocardial function and energetics in pressure-overload heart failure. Am J Physiol Heart Circ Physiol 312:H305–H313. https://doi.org/10.1152/ajpheart.00553.2016

    Article  PubMed  Google Scholar 

  68. Kang HM, Ahn SH, Choi P, Ko YA, Han SH, Chinga F, Park AS, Tao J, Sharma K, Pullman J, Bottinger EP, Goldberg IJ, Susztak K (2015) Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med 21:37–46. https://doi.org/10.1038/nm.3762

    CAS  Article  PubMed  Google Scholar 

  69. Katzen J, Beers MF (2020) Contributions of alveolar epithelial cell quality control to pulmonary fibrosis. J Clin Invest 130:5088–5099. https://doi.org/10.1172/JCI139519

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Kawai T, Masaki T, Doi S, Arakawa T, Yokoyama Y, Doi T, Kohno N, Yorioka N (2009) PPAR-gamma agonist attenuates renal interstitial fibrosis and inflammation through reduction of TGF-beta. Lab Invest 89:47–58. https://doi.org/10.1038/labinvest.2008.104

    CAS  Article  PubMed  Google Scholar 

  71. Khomich O, Ivanov AV, Bartosch B (2019) Metabolic hallmarks of hepatic stellate cells in liver fibrosis. Cells. https://doi.org/10.3390/cells9010024

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kim CW, Addy C, Kusunoki J, Anderson NN, Deja S, Fu X, Burgess SC, Li C, Ruddy M, Chakravarthy M, Previs S, Milstein S, Fitzgerald K, Kelley DE, Horton JD (2017) Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation. Cell Metab 26:576. https://doi.org/10.1016/j.cmet.2017.08.011

    CAS  Article  PubMed  Google Scholar 

  73. Klingberg F, Hinz B, White ES (2013) The myofibroblast matrix: implications for tissue repair and fibrosis. J Pathol 229:298–309. https://doi.org/10.1002/path.4104

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. Koundouros N, Poulogiannis G (2020) Reprogramming of fatty acid metabolism in cancer. Br J Cancer 122:4–22. https://doi.org/10.1038/s41416-019-0650-z

    CAS  Article  PubMed  Google Scholar 

  75. Landen NX, Li D, Stahle M (2016) Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci 73:3861–3885. https://doi.org/10.1007/s00018-016-2268-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Lebleu VS, Taduri G, O’connell J, Teng Y, Cooke VG, Woda C, Sugimoto H, Kalluri R (2013) Origin and function of myofibroblasts in kidney fibrosis. Nat Med 19:1047–1053. https://doi.org/10.1038/nm.3218

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Lee YS, Jeong WI (2012) Retinoic acids and hepatic stellate cells in liver disease. J Gastroenterol Hepatol 27(Suppl 2):75–79. https://doi.org/10.1111/j.1440-1746.2011.07007.x

    CAS  Article  PubMed  Google Scholar 

  78. Lee J, Park JS, Roh YS (2019) Molecular insights into the role of mitochondria in non-alcoholic fatty liver disease. Arch Pharm Res 42:935–946. https://doi.org/10.1007/s12272-019-01178-1

    CAS  Article  PubMed  Google Scholar 

  79. Li Z, Berk M, Mcintyre TM, Gores GJ, Feldstein AE (2008) The lysosomal-mitochondrial axis in free fatty acid-induced hepatic lipotoxicity. Hepatology 47:1495–1503. https://doi.org/10.1002/hep.22183

    CAS  Article  PubMed  Google Scholar 

  80. Li L, Emmett N, Mann D, Zhao X (2010) Fenofibrate attenuates tubulointerstitial fibrosis and inflammation through suppression of nuclear factor-kappaB and transforming growth factor-beta1/Smad3 in diabetic nephropathy. Exp Biol Med (Maywood) 235:383–391. https://doi.org/10.1258/ebm.2009.009218

    CAS  Article  Google Scholar 

  81. Liu Y, Binz J, Numerick MJ, Dennis S, Luo G, Desai B, Mackenzie KI, Mansfield TA, Kliewer SA, Goodwin B, Jones SA (2003) Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis. J Clin Invest 112:1678–1687. https://doi.org/10.1172/JCI18945

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. Liu HX, Ly I, Hu Y, Wan YJ (2014) Retinoic acid regulates cell cycle genes and accelerates normal mouse liver regeneration. Biochem Pharmacol 91:256–265. https://doi.org/10.1016/j.bcp.2014.07.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Loichot C, Jesel L, Tesse A, Tabernero A, Schoonjans K, Roul G, Carpusca I, Auwerx J, Andriantsitohaina R (2006) Deletion of peroxisome proliferator-activated receptor-alpha induces an alteration of cardiac functions. Am J Physiol Heart Circ Physiol 291:H161–H166. https://doi.org/10.1152/ajpheart.01065.2004

    CAS  Article  PubMed  Google Scholar 

  84. Loomba R, Kayali Z, Noureddin M, Ruane P, Lawitz EJ, Bennett M, Wang L, Harting E, Tarrant JM, Mccolgan BJ, Chung C, Ray AS, Subramanian GM, Myers RP, Middleton MS, Lai M, Charlton M, Harrison SA (2018) GS-0976 reduces hepatic steatosis and fibrosis markers in patients with nonalcoholic fatty liver disease. Gastroenterology 155:1463-1473.e6. https://doi.org/10.1053/j.gastro.2018.07.027

    CAS  Article  Google Scholar 

  85. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258. https://doi.org/10.1152/physrev.00015.2009

    CAS  Article  PubMed  Google Scholar 

  86. Ma ZG, Yuan YP, Wu HM, Zhang X, Tang QZ (2018) Cardiac fibrosis: new insights into the pathogenesis. Int J Biol Sci 14:1645–1657. https://doi.org/10.7150/ijbs.28103

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. Mack M, Yanagita M (2015) Origin of myofibroblasts and cellular events triggering fibrosis. Kidney Int 87:297–307. https://doi.org/10.1038/ki.2014.287

    Article  PubMed  Google Scholar 

  88. Mao J, Demayo FJ, Li H, Abu-Elheiga L, Gu Z, Shaikenov TE, Kordari P, Chirala SS, Heird WC, Wakil SJ (2006) Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Proc Natl Acad Sci USA 103:8552–8557. https://doi.org/10.1073/pnas.0603115103

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. Miguel V, Tituana J, Herrero JI, Herrero L, Serra D, Cuevas P, Barbas C, Puyol DR, Marquez-Exposito L, Ruiz-Ortega M, Castillo C, Sheng X, Susztak K, Ruiz-Canela M, Salas-Salvado J, Gonzalez MAM, Ortega S, Ramos R, Lamas S (2021) Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis. J Clin Invest. https://doi.org/10.1172/JCI140695

    Article  PubMed  PubMed Central  Google Scholar 

  90. Montagner A, Polizzi A, Fouche E, Ducheix S, Lippi Y, Lasserre F, Barquissau V, Regnier M, Lukowicz C, Benhamed F, Iroz A, Bertrand-Michel J, Al Saati T, Cano P, Mselli-Lakhal L, Mithieux G, Rajas F, Lagarrigue S, Pineau T, Loiseau N, Postic C, Langin D, Wahli W, Guillou H (2016) Liver PPARalpha is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut 65:1202–1214. https://doi.org/10.1136/gutjnl-2015-310798

    CAS  Article  PubMed  Google Scholar 

  91. Montgomery RL, Potthoff MJ, Haberland M, Qi X, Matsuzaki S, Humphries KM, Richardson JA, Bassel-Duby R, Olson EN (2008) Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J Clin Invest 118:3588–3597. https://doi.org/10.1172/JCI35847

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. Moustafa T, Fickert P, Magnes C, Guelly C, Thueringer A, Frank S, Kratky D, Sattler W, Reicher H, Sinner F, Gumhold J, Silbert D, Fauler G, Hofler G, Lass A, Zechner R, Trauner M (2012) Alterations in lipid metabolism mediate inflammation, fibrosis, and proliferation in a mouse model of chronic cholestatic liver injury. Gastroenterology 142:140-151.e12. https://doi.org/10.1053/j.gastro.2011.09.051

    CAS  Article  PubMed  Google Scholar 

  93. Mridha AR, Wree A, Robertson AAB, Yeh MM, Johnson CD, Van Rooyen DM, Haczeyni F, Teoh NC, Savard C, Ioannou GN, Masters SL, Schroder K, Cooper MA, Feldstein AE, Farrell GC (2017) NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J Hepatol 66:1037–1046. https://doi.org/10.1016/j.jhep.2017.01.022

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. Mustafa M, Wang TN, Chen X, Gao B, Krepinsky JC (2016) SREBP inhibition ameliorates renal injury after unilateral ureteral obstruction. Am J Physiol Renal Physiol 311:F614–F625. https://doi.org/10.1152/ajprenal.00140.2016

    CAS  Article  PubMed  Google Scholar 

  95. Nelson RH (2013) Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care 40:195–211. https://doi.org/10.1016/j.pop.2012.11.003

    Article  PubMed  Google Scholar 

  96. Okamura DM, Pennathur S, Pasichnyk K, Lopez-Guisa JM, Collins S, Febbraio M, Heinecke J, Eddy AA (2009) CD36 regulates oxidative stress and inflammation in hypercholesterolemic CKD. J Am Soc Nephrol 20:495–505. https://doi.org/10.1681/ASN.2008010009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. Oruqaj G, Karnati S, Vijayan V, Kotarkonda LK, Boateng E, Zhang W, Ruppert C, Gunther A, Shi W, Baumgart-Vogt E (2015) Compromised peroxisomes in idiopathic pulmonary fibrosis, a vicious cycle inducing a higher fibrotic response via TGF-beta signaling. Proc Natl Acad Sci USA 112:E2048–E2057. https://doi.org/10.1073/pnas.1415111112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. Parhofer KG (2016) The treatment of disorders of lipid metabolism. Dtsch Arztebl Int 113:261–268. https://doi.org/10.3238/arztebl.2016.0261

    Article  PubMed  PubMed Central  Google Scholar 

  99. Pawlak M, Bauge E, Bourguet W, De Bosscher K, Lalloyer F, Tailleux A, Lebherz C, Lefebvre P, Staels B (2014) The transrepressive activity of peroxisome proliferator-activated receptor alpha is necessary and sufficient to prevent liver fibrosis in mice. Hepatology 60:1593–1606. https://doi.org/10.1002/hep.27297

    CAS  Article  PubMed  Google Scholar 

  100. Pawlak M, Lefebvre P, Staels B (2015) Molecular mechanism of PPARalpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol 62:720–733. https://doi.org/10.1016/j.jhep.2014.10.039

    CAS  Article  PubMed  Google Scholar 

  101. Plantier L, Besnard V, Xu Y, Ikegami M, Wert SE, Hunt AN, Postle AD, Whitsett JA (2012) Activation of sterol-response element-binding proteins (SREBP) in alveolar type II cells enhances lipogenesis causing pulmonary lipotoxicity. J Biol Chem 287:10099–10114. https://doi.org/10.1074/jbc.M111.303669

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  102. Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H (2014) Atherosclerosis: process, indicators, risk factors and new hopes. Int J Prev Med 5(8):927–946

    PubMed  PubMed Central  Google Scholar 

  103. Rangarajan S, Bone NB, Zmijewska AA, Jiang S, Park DW, Bernard K, Locy ML, Ravi S, Deshane J, Mannon RB, Abraham E, Darley-Usmar V, Thannickal VJ, Zmijewski JW (2018) Metformin reverses established lung fibrosis in a bleomycin model. Nat Med 24:1121–1127. https://doi.org/10.1038/s41591-018-0087-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. Ratziu V, Harrison SA, Francque S, Bedossa P, Lehert P, Serfaty L, Romero-Gomez M, Boursier J, Abdelmalek M, Caldwell S, Drenth J, Anstee QM, Hum D, Hanf R, Roudot A, Megnien S, Staels B, Sanyal A, Group G-IS (2016) Elafibranor, an agonist of the peroxisome proliferator-activated receptor-alpha and -delta, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology 150(e5):1147–1159. https://doi.org/10.1053/j.gastro.2016.01.038

    CAS  Article  PubMed  Google Scholar 

  105. Rodrigues M, Kosaric N, Bonham CA, Gurtner GC (2019) Wound healing: a cellular perspective. Physiol Rev 99:665–706. https://doi.org/10.1152/physrev.00067.2017

    CAS  Article  PubMed  Google Scholar 

  106. Romero F, Hong X, Shah D, Kallen CB, Rosas I, Guo Z, Schriner D, Barta J, Shaghaghi H, Hoek JB, Mesaros C, Choi AM, Snyder NW, Summer R (2018) Lipid synthesis is required to resolve endoplasmic reticulum stress and limit fibrotic responses in the lung. Am J Respir Cell Mol Biol 59:225–236. https://doi.org/10.1165/rcmb.2017-0340OC

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. Routh RE, Johnson JH, Mccarthy KJ (2002) Troglitazone suppresses the secretion of type I collagen by mesangial cells in vitro. Kidney Int 61:1365–1376. https://doi.org/10.1046/j.1523-1755.2002.00277.x

    CAS  Article  PubMed  Google Scholar 

  108. Rui L (2014) Energy metabolism in the liver. Compr Physiol 4:177–197. https://doi.org/10.1002/cphy.c130024

    Article  PubMed  PubMed Central  Google Scholar 

  109. Schulze PC, Drosatos K, Goldberg IJ (2016) Lipid use and misuse by the heart. Circ Res 118:1736–1751. https://doi.org/10.1161/CIRCRESAHA.116.306842

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  110. Serhan CN, Chiang N, Dalli J, Levy BD (2014) Lipid mediators in the resolution of inflammation. Cold Spring Harb Perspect Biol 7:a016311. https://doi.org/10.1101/cshperspect.a016311

    Article  PubMed  Google Scholar 

  111. Shichino S, Ueha S, Hashimoto S, Otsuji M, Abe J, Tsukui T, Deshimaru S, Nakajima T, Kosugi-Kanaya M, Shand FH, Inagaki Y, Shimano H, Matsushima K (2019) Transcriptome network analysis identifies protective role of the LXR/SREBP-1c axis in murine pulmonary fibrosis. JCI Insight. https://doi.org/10.1172/jci.insight.122163

    Article  PubMed  PubMed Central  Google Scholar 

  112. Shinozaki S, Tahara T, Lefor AK, Ogura M (2021) Pemafibrate improves hepatic inflammation, function and fibrosis in patients with non-alcoholic fatty liver disease: a one-year observational study. Clin Exp Hepatol 7:172–177. https://doi.org/10.5114/ceh.2021.106864

    Article  PubMed  PubMed Central  Google Scholar 

  113. Sletten AC, Peterson LR, Schaffer JE (2018) Manifestations and mechanisms of myocardial lipotoxicity in obesity. J Intern Med 284:478–491. https://doi.org/10.1111/joim.12728

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  114. Smeets PJ, Teunissen BE, Willemsen PH, Van Nieuwenhoven FA, Brouns AE, Janssen BJ, Cleutjens JP, Staels B, Van Der Vusse GJ, Van Bilsen M (2008) Cardiac hypertrophy is enhanced in PPAR alpha-/- mice in response to chronic pressure overload. Cardiovasc Res 78:79–89. https://doi.org/10.1093/cvr/cvn001

    CAS  Article  PubMed  Google Scholar 

  115. Solinas G, Boren J, Dulloo AG (2015) De novo lipogenesis in metabolic homeostasis: more friend than foe? Mol Metab 4:367–377. https://doi.org/10.1016/j.molmet.2015.03.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  116. Son NH, Park TS, Yamashita H, Yokoyama M, Huggins LA, Okajima K, Homma S, Szabolcs MJ, Huang LS, Goldberg IJ (2007) Cardiomyocyte expression of PPARgamma leads to cardiac dysfunction in mice. J Clin Invest 117:2791–2801. https://doi.org/10.1172/JCI30335

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  117. Souza AC, Bocharov AV, Baranova IN, Vishnyakova TG, Huang YG, Wilkins KJ, Hu X, Street JM, Alvarez-Prats A, Mullick AE, Patterson AP, Remaley AT, Eggerman TL, Yuen PS, Star RA (2016) Antagonism of scavenger receptor CD36 by 5A peptide prevents chronic kidney disease progression in mice independent of blood pressure regulation. Kidney Int 89:809–822. https://doi.org/10.1016/j.kint.2015.12.043

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  118. Staels B, Rubenstrunk A, Noel B, Rigou G, Delataille P, Millatt LJ, Baron M, Lucas A, Tailleux A, Hum DW, Ratziu V, Cariou B, Hanf R (2013) Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology 58:1941–1952. https://doi.org/10.1002/hep.26461

    CAS  Article  PubMed  Google Scholar 

  119. Summer R, Mora AL (2019) Lipid metabolism: a new player in the conundrum of lung fibrosis. Am J Respir Cell Mol Biol 61:669–670. https://doi.org/10.1165/rcmb.2019-0098ED

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  120. Sun Z, Singh N, Mullican SE, Everett LJ, Li L, Yuan L, Liu X, Epstein JA, Lazar MA (2011) Diet-induced lethality due to deletion of the Hdac3 gene in heart and skeletal muscle. J Biol Chem 286:33301–33309. https://doi.org/10.1074/jbc.M111.277707

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  121. Sunaga H, Matsui H, Ueno M, Maeno T, Iso T, Syamsunarno MR, Anjo S, Matsuzaka T, Shimano H, Yokoyama T, Kurabayashi M (2013) Deranged fatty acid composition causes pulmonary fibrosis in Elovl6-deficient mice. Nat Commun 4:2563. https://doi.org/10.1038/ncomms3563

    CAS  Article  PubMed  Google Scholar 

  122. Sunshine H, Iruela-Arispe ML (2017) Membrane lipids and cell signaling. Curr Opin Lipidol 28:408–413. https://doi.org/10.1097/MOL.0000000000000443

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  123. Suryadevara V, Ramchandran R, Kamp DW, Natarajan V (2020) Lipid mediators regulate pulmonary fibrosis: potential mechanisms and signaling pathways. Int J Mol Sci. https://doi.org/10.3390/ijms21124257

    Article  PubMed  PubMed Central  Google Scholar 

  124. Taguchi K, Kensler TW (2020) Nrf2 in liver toxicology. Arch Pharm Res 43:337–349. https://doi.org/10.1007/s12272-019-01192-3

    CAS  Article  PubMed  Google Scholar 

  125. Teratani T, Tomita K, Suzuki T, Oshikawa T, Yokoyama H, Shimamura K, Tominaga S, Hiroi S, Irie R, Okada Y, Kurihara C, Ebinuma H, Saito H, Hokari R, Sugiyama K, Kanai T, Miura S, Hibi T (2012) A high-cholesterol diet exacerbates liver fibrosis in mice via accumulation of free cholesterol in hepatic stellate cells. Gastroenterology 142:152-164.e10. https://doi.org/10.1053/j.gastro.2011.09.049

    CAS  Article  PubMed  Google Scholar 

  126. Testerink N, Ajat M, Houweling M, Brouwers JF, Pully VV, Van Manen HJ, Otto C, Helms JB, Vaandrager AB (2012) Replacement of retinyl esters by polyunsaturated triacylglycerol species in lipid droplets of hepatic stellate cells during activation. PLoS ONE 7:e34945. https://doi.org/10.1371/journal.pone.0034945

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  127. Tian Z, Liang M (2021) Renal metabolism and hypertension. Nat Commun 12:963. https://doi.org/10.1038/s41467-021-21301-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  128. Todd NW, Luzina IG, Atamas SP (2012) Molecular and cellular mechanisms of pulmonary fibrosis. Fibrogenesis Tissue Repair 5:11. https://doi.org/10.1186/1755-1536-5-11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  129. Tomita K, Teratani T, Suzuki T, Shimizu M, Sato H, Narimatsu K, Usui S, Furuhashi H, Kimura A, Nishiyama K, Maejima T, Okada Y, Kurihara C, Shimamura K, Ebinuma H, Saito H, Yokoyama H, Watanabe C, Komoto S, Nagao S, Sugiyama K, Aosasa S, Hatsuse K, Yamamoto J, Hibi T, Miura S, Hokari R, Kanai T (2014) Acyl-CoA:cholesterol acyltransferase 1 mediates liver fibrosis by regulating free cholesterol accumulation in hepatic stellate cells. J Hepatol 61:98–106. https://doi.org/10.1016/j.jhep.2014.03.018

    CAS  Article  PubMed  Google Scholar 

  130. Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC (2016) Cardiac fibrosis: the fibroblast awakens. Circ Res 118:1021–1040. https://doi.org/10.1161/CIRCRESAHA.115.306565

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  131. Tsuchida T, Friedman SL (2017) Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 14:397–411. https://doi.org/10.1038/nrgastro.2017.38

    CAS  Article  PubMed  Google Scholar 

  132. Van Der Veen JN, Lingrell S, Gao X, Takawale A, Kassiri Z, Vance DE, Jacobs RL (2017) Fenofibrate, but not ezetimibe, prevents fatty liver disease in mice lacking phosphatidylethanolamine N-methyltransferase. J Lipid Res 58:656–667. https://doi.org/10.1194/jlr.M070631

    Article  PubMed  PubMed Central  Google Scholar 

  133. Varga T, Czimmerer Z, Nagy L (2011) PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta 1812:1007–1022. https://doi.org/10.1016/j.bbadis.2011.02.014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  134. Vikramadithyan RK, Hirata K, Yagyu H, Hu Y, Augustus A, Homma S, Goldberg IJ (2005) Peroxisome proliferator-activated receptor agonists modulate heart function in transgenic mice with lipotoxic cardiomyopathy. J Pharmacol Exp Ther 313:586–593. https://doi.org/10.1124/jpet.104.080259

    CAS  Article  PubMed  Google Scholar 

  135. Viola A, Munari F, Sanchez-Rodriguez R, Scolaro T, Castegna A (2019) The metabolic signature of macrophage responses. Front Immunol 10:1462. https://doi.org/10.3389/fimmu.2019.01462

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  136. Wakil SJ, Abu-Elheiga LA (2009) Fatty acid metabolism: target for metabolic syndrome. J Lipid Res 50:S138–S143. https://doi.org/10.1194/jlr.R800079-JLR200

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  137. Walther TC, Farese RV Jr (2012) Lipid droplets and cellular lipid metabolism. Annu Rev Biochem 81:687–714. https://doi.org/10.1146/annurev-biochem-061009-102430

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  138. Wanders RJ, Ferdinandusse S, Brites P, Kemp S (2010) Peroxisomes, lipid metabolism and lipotoxicity. Biochim Biophys Acta 1801:272–280. https://doi.org/10.1016/j.bbalip.2010.01.001

    CAS  Article  PubMed  Google Scholar 

  139. Wang P, Liu J, Li Y, Wu S, Luo J, Yang H, Subbiah R, Chatham J, Zhelyabovska O, Yang Q (2010) Peroxisome proliferator-activated receptor {delta} is an essential transcriptional regulator for mitochondrial protection and biogenesis in adult heart. Circ Res 106:911–919. https://doi.org/10.1161/CIRCRESAHA.109.206185

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  140. Wang Y, Pang L, Zhang Y, Lin J, Zhou H (2019) Fenofibrate improved interstitial fibrosis of renal allograft through inhibited epithelial-mesenchymal transition induced by oxidative stress. Oxid Med Cell Longev 2019:8936856. https://doi.org/10.1155/2019/8936856

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  141. Wang Y, Nakajima T, Gonzalez FJ, Tanaka N (2020) PPARs as metabolic regulators in the liver: lessons from liver-specific PPAR-null mice. Int J Mol Sci. https://doi.org/10.3390/ijms21062061

    Article  PubMed  PubMed Central  Google Scholar 

  142. Watanabe K, Fujii H, Takahashi T, Kodama M, Aizawa Y, Ohta Y, Ono T, Hasegawa G, Naito M, Nakajima T, Kamijo Y, Gonzalez FJ, Aoyama T (2000) Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor alpha associated with age-dependent cardiac toxicity. J Biol Chem 275:22293–22299. https://doi.org/10.1074/jbc.M000248200

    CAS  Article  PubMed  Google Scholar 

  143. Wei WY, Zhang N, Li LL, Ma ZG, Xu M, Yuan YP, Deng W, Tang QZ (2018) Pioglitazone alleviates cardiac fibrosis and inhibits endothelial to mesenchymal transition induced by pressure overload. Cell Physiol Biochem 45:26–36. https://doi.org/10.1159/000486220

    CAS  Article  PubMed  Google Scholar 

  144. Weiskirchen R, Weiskirchen S, Tacke F (2019) Organ and tissue fibrosis: molecular signals, cellular mechanisms and translational implications. Mol Aspects Med 65:2–15. https://doi.org/10.1016/j.mam.2018.06.003

    CAS  Article  PubMed  Google Scholar 

  145. Wells RG (2008) Cellular sources of extracellular matrix in hepatic fibrosis. Clin Liver Dis 12:759–768. https://doi.org/10.1016/j.cld.2008.07.008

    Article  PubMed  PubMed Central  Google Scholar 

  146. Wijsenbeek M, Cottin V (2020) Spectrum of fibrotic lung diseases. Reply. N Engl J Med 383:2485–2486. https://doi.org/10.1056/NEJMc2031135

    Article  PubMed  Google Scholar 

  147. Wobser H, Dorn C, Weiss TS, Amann T, Bollheimer C, Buttner R, Scholmerich J, Hellerbrand C (2009) Lipid accumulation in hepatocytes induces fibrogenic activation of hepatic stellate cells. Cell Res 19:996–1005. https://doi.org/10.1038/cr.2009.73

    CAS  Article  PubMed  Google Scholar 

  148. Wu KC, Liu J, Klaassen CD (2012) Role of Nrf2 in preventing ethanol-induced oxidative stress and lipid accumulation. Toxicol Appl Pharmacol 262:321–329. https://doi.org/10.1016/j.taap.2012.05.010

    CAS  Article  PubMed  Google Scholar 

  149. Wu H, Yu Y, Huang H, Hu Y, Fu S, Wang Z, Shi M, Zhao X, Yuan J, Li J, Yang X, Bin E, Wei D, Zhang H, Zhang J, Yang C, Cai T, Dai H, Chen J, Tang N (2020) Progressive pulmonary fibrosis is caused by elevated mechanical tension on alveolar stem cells. Cell 180:107-121.e17. https://doi.org/10.1016/j.cell.2019.11.027

    CAS  Article  PubMed  Google Scholar 

  150. Xie N, Tan Z, Banerjee S, Cui H, Ge J, Liu RM, Bernard K, Thannickal VJ, Liu G (2015) Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am J Respir Crit Care Med 192:1462–1474. https://doi.org/10.1164/rccm.201504-0780OC

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  151. Xu X, So JS, Park JG, Lee AH (2013) Transcriptional control of hepatic lipid metabolism by SREBP and ChREBP. Semin Liver Dis 33:301–311. https://doi.org/10.1055/s-0033-1358523

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  152. Yagyu H, Chen G, Yokoyama M, Hirata K, Augustus A, Kako Y, Seo T, Hu Y, Lutz EP, Merkel M, Bensadoun A, Homma S, Goldberg IJ (2003) Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake and produces a cardiomyopathy. J Clin Invest 111:419–426. https://doi.org/10.1172/JCI16751

    Article  PubMed  PubMed Central  Google Scholar 

  153. Yang J, Sambandam N, Han X, Gross RW, Courtois M, Kovacs A, Febbraio M, Finck BN, Kelly DP (2007) CD36 deficiency rescues lipotoxic cardiomyopathy. Circ Res 100:1208–1217. https://doi.org/10.1161/01.RES.0000264104.25265.b6

    CAS  Article  PubMed  Google Scholar 

  154. Yang L, Stimpson SA, Chen L, Wallace Harrington W, Rockey DC (2010) Effectiveness of the PPARgamma agonist, GW570, in liver fibrosis. Inflamm Res 59:1061–1071. https://doi.org/10.1007/s00011-010-0226-0

    CAS  Article  PubMed  Google Scholar 

  155. Yang L, Roh YS, Song J, Zhang B, Liu C, Loomba R, Seki E (2014) Transforming growth factor beta signaling in hepatocytes participates in steatohepatitis through regulation of cell death and lipid metabolism in mice. Hepatology 59:483–495. https://doi.org/10.1002/hep.26698

    CAS  Article  PubMed  Google Scholar 

  156. Yang L, Li M, Shan Y, Shen S, Bai Y, Liu H (2016) Recent advances in lipidomics for disease research. J Sep Sci 39:38–50. https://doi.org/10.1002/jssc.201500899

    CAS  Article  PubMed  Google Scholar 

  157. Yang X, Okamura DM, Lu X, Chen Y, Moorhead J, Varghese Z, Ruan XZ (2017) CD36 in chronic kidney disease: novel insights and therapeutic opportunities. Nat Rev Nephrol 13:769–781. https://doi.org/10.1038/nrneph.2017.126

    CAS  Article  PubMed  Google Scholar 

  158. Yu G, Tzouvelekis A, Wang R, Herazo-Maya JD, Ibarra GH, Srivastava A, De Castro JPW, Deiuliis G, Ahangari F, Woolard T, Aurelien N, Arrojo EDR, Gan Y, Graham M, Liu X, Homer RJ, Scanlan TS, Mannam P, Lee PJ, Herzog EL, Bianco AC, Kaminski N (2018) Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function. Nat Med 24:39–49. https://doi.org/10.1038/nm.4447

    CAS  Article  PubMed  Google Scholar 

  159. Yu H, Jiang X, Dong F, Zhang F, Ji X, Xue M, Yang F, Chen J, Hu X, Bao Z (2021) Lipid accumulation-induced hepatocyte senescence regulates the activation of hepatic stellate cells through the Nrf2-antioxidant response element pathway. Exp Cell Res 405:112689. https://doi.org/10.1016/j.yexcr.2021.112689

    CAS  Article  PubMed  Google Scholar 

  160. Zhang H, You L, Zhao M (2019) Rosiglitazone attenuates paraquat-induced lung fibrosis in rats in a PPAR gamma-dependent manner. Eur J Pharmacol 851:133–143. https://doi.org/10.1016/j.ejphar.2019.02.037

    CAS  Article  PubMed  Google Scholar 

  161. Zhang J, Muise ES, Han S, Kutchukian PS, Costet P, Zhu Y, Kan Y, Zhou H, Shah V, Huang Y, Saigal A, Akiyama TE, Shen XL, Cai TQ, Shah K, Carballo-Jane E, Zycband E, Yi L, Tian Y, Chen Y, Imbriglio J, Smith E, Devito K, Conway J, Ma LJ, Hoek M, Sebhat IK, Peier AM, Talukdar S, Mclaren DG, Previs SF, Jensen KK, Pinto S (2020) Molecular profiling reveals a common metabolic signature of tissue fibrosis. Cell Rep Med 1:100056. https://doi.org/10.1016/j.xcrm.2020.100056

    Article  PubMed  PubMed Central  Google Scholar 

  162. Zhao X, Kwan JYY, Yip K, Liu PP, Liu FF (2020) Targeting metabolic dysregulation for fibrosis therapy. Nat Rev Drug Discov 19:57–75. https://doi.org/10.1038/s41573-019-0040-5

    CAS  Article  PubMed  Google Scholar 

  163. Zhou Z, Deng L, Hu L, Ren Q, Cai Z, Wang B, Li Z, Zhang L (2020) Hepatoprotective effects of ZLY16, a dual peroxisome proliferator-activated receptor alpha/delta agonist, in rodent model of nonalcoholic steatohepatitis. Eur J Pharmacol 882:173300. https://doi.org/10.1016/j.ejphar.2020.173300

    CAS  Article  PubMed  Google Scholar 

  164. Ziaeian B, Fonarow GC (2017) Statins and the prevention of heart disease. JAMA Cardiol 2:464. https://doi.org/10.1001/jamacardio.2016.4320

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a 2-Year Research Grant of Pusan National University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ki Wung Chung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hwang, S., Chung, K.W. Targeting fatty acid metabolism for fibrotic disorders. Arch. Pharm. Res. 44, 839–856 (2021). https://doi.org/10.1007/s12272-021-01352-4

Download citation

Keywords

  • Fibrosis
  • Fatty acid metabolism
  • Fibroblast
  • TGF-beta