Skip to main content

Mouse model of the adipose organ: the heterogeneous anatomical characteristics

Abstract

Adipose tissue plays a pivotal role in energy storage, hormone secretion, and temperature control. Mammalian adipose tissue is largely divided into white adipose tissue and brown adipose tissue, although recent studies have discovered the existence of beige adipocytes. Adipose tissues are widespread over the whole body and each location shows distinctive metabolic features. Mice are used as a representative experimental model system in metabolic studies due to their numerous advantages. Importantly, the adipose tissues of experimental animals and humans are not perfectly matched, and each adipose tissue exhibits both similar and specific characteristics. Nevertheless, the diversity and characteristics of mouse adipose tissue have not yet been comprehensively summarized. This review summarizes diverse information about the different types of adipose tissue being studied in mouse models. The types and characteristics of adipocytes were described, and each adipose tissue was classified by type, and features such as its distribution, origin, differences from humans, and metabolic characteristics were described. In particular, the distribution of widely studied adipose tissues was illustrated so that researchers can comprehensively grasp its location. Also, the adipose tissues misused or confusingly used among researchers were described. This review will provide researchers with comprehensive information and cautions needed to study adipose tissues in mouse models.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Addison O, Marcus RL, Lastayo PC, Ryan AS (2014) Intermuscular fat: a review of the consequences and causes. Int J Endocrinol 2014:309570. https://doi.org/10.1155/2014/309570

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Al-Dibouni A, Gaspar R, Ige S, Boateng S, Cagampang FR, Gibbins J, Cox RD, Sellayah D (2020) Unique genetic and histological signatures of mouse pericardial adipose tissue. Nutrients 12:1855. https://doi.org/10.3390/nu12061855

    CAS  Article  PubMed Central  Google Scholar 

  3. Alexander CM, Kasza I, Yen CL, Reeder SB, Hernando D, Gallo RL, Jahoda CA, Horsley V, Macdougald OA (2015) Dermal white adipose tissue: a new component of the thermogenic response. J Lipid Res 56:2061–2069. https://doi.org/10.1194/jlr.R062893

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Altintas MM, Azad A, Nayer B, Contreras G, Zaias J, Faul C, Reiser J, Nayer A (2011a) Mast cells, macrophages, and crown-like structures distinguish subcutaneous from visceral fat in mice. J Lipid Res 52:480–488. https://doi.org/10.1194/jlr.M011338

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Altintas MM, Rossetti MA, Nayer B, Puig A, Zagallo P, Ortega LM, Johnson KB, Mcnamara G, Reiser J, Mendez AJ, Nayer A (2011b) Apoptosis, mastocytosis, and diminished adipocytokine gene expression accompany reduced epididymal fat mass in long-standing diet-induced obese mice. Lipids Health Dis 10:198. https://doi.org/10.1186/1476-511X-10-198

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. An YA, Scherer PE (2020) Mouse adipose tissue protein extraction. Bio Protoc 10:e3631. https://doi.org/10.21769/BioProtoc.3631

  7. Bagchi DP, Macdougald OA (2019) Identification and dissection of diverse mouse adipose depots. J vis Exp. https://doi.org/10.3791/59499

    Article  PubMed  Google Scholar 

  8. Bagchi DP, Forss I, Mandrup S, Macdougald OA (2018a) SnapShot: niche determines adipocyte character I. Cell Metab 27:264–264. https://doi.org/10.1016/j.cmet.2017.11.012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Bagchi DP, Forss I, Mandrup S, Macdougald OA (2018b) SnapShot: niche determines adipocyte character II. Cell Metab 27:266–266. https://doi.org/10.1016/j.cmet.2017.11.013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino JP, De Matteis R, Cinti S (2010) The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 298:E1244-1253. https://doi.org/10.1152/ajpendo.00600.2009

    CAS  Article  PubMed  Google Scholar 

  11. Barreau C, Labit E, Guissard C, Rouquette J, Boizeau ML, Gani Koumassi S, Carriere A, Jeanson Y, Berger-Muller S, Dromard C, Plouraboue F, Casteilla L, Lorsignol A (2016) Regionalization of browning revealed by whole subcutaneous adipose tissue imaging. Obesity (silver Spring) 24:1081–1089. https://doi.org/10.1002/oby.21455

    CAS  Article  Google Scholar 

  12. Berkowitz DE, Nardone NA, Smiley RM, Price DT, Kreutter DK, Fremeau RT, Schwinn DA (1995) Distribution of beta 3-adrenoceptor mRNA in human tissues. Eur J Pharmacol 289:223–228. https://doi.org/10.1016/0922-4106(95)90098-5

    CAS  Article  PubMed  Google Scholar 

  13. Berryman DE, List EO (2017) Growth hormone’s effect on adipose tissue: quality versus quantity. Int J Mol Sci 18:1621. https://doi.org/10.3390/ijms18081621

    CAS  Article  PubMed Central  Google Scholar 

  14. Bertaso AG, Bertol D, Duncan BB, Foppa M (2013) Epicardial fat: definition, measurements and systematic review of main outcomes. Arq Bras Cardiol 101:e18-28. https://doi.org/10.5935/abc.20130138

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bjorntorp P (1990) “Portal” adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis 10:493–496. https://doi.org/10.1161/01.ATV.10.4.493

    CAS  Article  PubMed  Google Scholar 

  16. Branca RT, Mccallister A, Yuan H, Aghajanian A, Faber JE, Weimer N, Buchanan R, Floyd CS, Antonacci M, Zhang L, Burant A (2018) Accurate quantification of brown adipose tissue mass by xenon-enhanced computed tomography. Proc Natl Acad Sci U S A 115:174–179. https://doi.org/10.1073/pnas.1714431115

    CAS  Article  PubMed  Google Scholar 

  17. Britton KA, Fox CS (2011) Ectopic fat depots and cardiovascular disease. Circulation 124:e837-841. https://doi.org/10.1161/CIRCULATIONAHA.111.077602

    Article  PubMed  Google Scholar 

  18. Brown NK, Zhou Z, Zhang J, Zeng R, Wu J, Eitzman DT, Chen YE, Chang L (2014) Perivascular adipose tissue in vascular function and disease: a review of current research and animal models. Arterioscler Thromb Vasc Biol 34:1621–1630. https://doi.org/10.1161/ATVBAHA.114.303029

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359. https://doi.org/10.1152/physrev.00015.2003

    CAS  Article  PubMed  Google Scholar 

  20. Chait A, Den Hartigh LJ (2020) Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front Cardiovasc Med 7:22. https://doi.org/10.3389/fcvm.2020.00022

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Chakrabarty K, Radhakrishnan J, Sharifi R, Mozes MF, Manaligod JR, Jeffay H (1988) Lipogenic activity and brown fat content of human perirenal adipose tissue. Clin Biochem 21:249–254. https://doi.org/10.1016/s0009-9120(88)80009-2

    CAS  Article  PubMed  Google Scholar 

  22. Chatterjee TK, Stoll LL, Denning GM, Harrelson A, Blomkalns AL, Idelman G, Rothenberg FG, Neltner B, Romig-Martin SA, Dickson EW, Rudich S, Weintraub NL (2009) Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding. Circ Res 104:541–549. https://doi.org/10.1161/CIRCRESAHA.108.182998

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Chau YY, Bandiera R, Serrels A, Martinez-Estrada OM, Qing W, Lee M, Slight J, Thornburn A, Berry R, Mchaffie S, Stimson RH, Walker BR, Chapuli RM, Schedl A, Hastie N (2014) Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nat Cell Biol 16:367–375. https://doi.org/10.1038/ncb2922

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Chen J, Shi Y, Regan J, Karuppaiah K, Ornitz DM, Long F (2014) Osx-Cre targets multiple cell types besides osteoblast lineage in postnatal mice. PLoS ONE 9:e85161. https://doi.org/10.1371/journal.pone.0085161

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Chi J, Wu Z, Choi CHJ, Nguyen L, Tegegne S, Ackerman SE, Crane A, Marchildon F, Tessier-Lavigne M, Cohen P (2018) Three-Dimensional Adipose Tissue Imaging Reveals Regional Variation in Beige Fat Biogenesis and PRDM16-Dependent Sympathetic Neurite Density. Cell Metab 27:226–236. https://doi.org/10.1016/j.cmet.2017.12.011

    CAS  Article  PubMed  Google Scholar 

  26. Chistiakov DA, Grechko AV, Myasoedova VA, Melnichenko AA, Orekhov AN (2017) Impact of the cardiovascular system-associated adipose tissue on atherosclerotic pathology. Atherosclerosis 263:361–368. https://doi.org/10.1016/j.atherosclerosis.2017.06.017

    CAS  Article  PubMed  Google Scholar 

  27. Chusyd DE, Wang D, Huffman DM, Nagy TR (2016) Relationships between rodent white adipose fat pads and human white adipose fat depots. Front Nutr 3:10. https://doi.org/10.3389/fnut.2016.00010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Cinti S (2005) The adipose organ. Prostaglandins Leukot Essent Fatty Acids 73:9–15. https://doi.org/10.1016/j.plefa.2005.04.010

    CAS  Article  PubMed  Google Scholar 

  29. Cinti S (2012) The adipose organ at a glance. Dis Model Mech 5:588–594. https://doi.org/10.1242/dmm.009662

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Clockaerts S, Bastiaansen-Jenniskens YM, Runhaar J, Van Osch GJ, Van Offel JF, Verhaar JA, De Clerck LS, Somville J (2010) The infrapatellar fat pad should be considered as an active osteoarthritic joint tissue: a narrative review. Osteoarthr Cartilage 18:876–882. https://doi.org/10.1016/j.joca.2010.03.014

    CAS  Article  Google Scholar 

  31. Coelho M, Oliveira T, Fernandes R (2013) Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci 9:191–200. https://doi.org/10.5114/aoms.2013.33181

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Cohen P, Kajimura S (2021) The cellular and functional complexity of thermogenic fat. Nat Rev Mol Cell Biol 22:393–409. https://doi.org/10.1038/s41580-021-00350-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Cohen CA, Shea AA, Heffron CL, Schmelz EM, Roberts PC (2013) Intra-abdominal fat depots represent distinct immunomodulatory microenvironments: a murine model. PLoS ONE 8:e66477. https://doi.org/10.1371/journal.pone.0066477

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517. https://doi.org/10.1056/NEJMoa0810780

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Cypess AM, Weiner LS, Roberts-Toler C, Franquet Elia E, Kessler SH, Kahn PA, English J, Chatman K, Trauger SA, Doria A, Kolodny GM (2015) Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist. Cell Metab 21:33–38. https://doi.org/10.1016/j.cmet.2014.12.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. De Jong JM, Larsson O, Cannon B, Nedergaard J (2015) A stringent validation of mouse adipose tissue identity markers. Am J Physiol Endocrinol Metab 308:E1085-1105. https://doi.org/10.1152/ajpendo.00023.2015

    CAS  Article  PubMed  Google Scholar 

  37. De Jong AJ, Klein-Wieringa IR, Kwekkeboom JC, Toes REM, Kloppenburg M, Ioan-Facsinay A (2018) Inflammatory features of infrapatellar fat pad in rheumatoid arthritis versus osteoarthritis reveal mostly qualitative differences. Ann Rheum Dis 77:1088–1090. https://doi.org/10.1136/annrheumdis-2017-211673

    CAS  Article  PubMed  Google Scholar 

  38. De Munck TJI, Soeters PB, Koek GH (2021) The role of ectopic adipose tissue: benefit or deleterious overflow? Eur J Clin Nutr 75:38–48. https://doi.org/10.1038/s41430-020-00713-4

    CAS  Article  PubMed  Google Scholar 

  39. Diaz Marin R, Crespo-Garcia S, Wilson AM, Sapieha P (2019) RELi protocol: optimization for protein extraction from white, brown and beige adipose tissues. MethodsX 6:918–928. https://doi.org/10.1016/j.mex.2019.04.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Driskell RR, Jahoda CA, Chuong CM, Watt FM, Horsley V (2014) Defining dermal adipose tissue. Exp Dermatol 23:629–631. https://doi.org/10.1111/exd.12450

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fantuzzi G (2005) Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 115:911–919. https://doi.org/10.1016/j.jaci.2005.02.023

    CAS  Article  PubMed  Google Scholar 

  42. Fedorenko A, Lishko PV, Kirichok Y (2012) Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151:400–413. https://doi.org/10.1016/j.cell.2012.09.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Fitzgibbons TP, Czech MP (2014) Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms and clinical associations. J Am Heart Assoc 3:e000582. https://doi.org/10.1161/JAHA.113.000582

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Fitzgibbons TP, Kogan S, Aouadi M, Hendricks GM, Straubhaar J, Czech MP (2011) Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. Am J Physiol Heart Circ Physiol 301:H1425-1437. https://doi.org/10.1152/ajpheart.00376.2011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, Vasan RS, Murabito JM, Meigs JB, Cupples LA, D’agostino Sr RB, O’donnell CJ (2007) Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 116:39–48. https://doi.org/10.1161/CIRCULATIONAHA.106.675355

    Article  Google Scholar 

  46. Frontini A, Cinti S (2010) Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metab 11:253–256. https://doi.org/10.1016/j.cmet.2010.03.004

    CAS  Article  PubMed  Google Scholar 

  47. Gaborit B, Sengenes C, Ancel P, Jacquier A, Dutour A (2017) Role of epicardial adipose tissue in health and disease: a matter of fat? Compr Physiol 7:1051–1082. https://doi.org/10.1002/cphy.c160034

    Article  PubMed  Google Scholar 

  48. Galic S, Oakhill JS, Steinberg GR (2010) Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316:129–139. https://doi.org/10.1016/j.mce.2009.08.018

    CAS  Article  PubMed  Google Scholar 

  49. Galvez-Prieto B, Bolbrinker J, Stucchi P, De Las Heras AI, Merino B, Arribas S, Ruiz-Gayo M, Huber M, Wehland M, Kreutz R, Fernandez-Alfonso MS (2008) Comparative expression analysis of the renin-angiotensin system components between white and brown perivascular adipose tissue. J Endocrinol 197:55–64. https://doi.org/10.1677/JOE-07-0284

    CAS  Article  PubMed  Google Scholar 

  50. Ghorbani A, Varedi M, Hadjzadeh MA, Omrani GH (2010) Type-1 diabetes induces depot-specific alterations in adipocyte diameter and mass of adipose tissues in the rat. Exp Clin Endocrinol Diabetes 118:442–448. https://doi.org/10.1055/s-0030-1247566

    CAS  Article  PubMed  Google Scholar 

  51. Gil-Ortega M, Somoza B, Huang Y, Gollasch M, Fernandez-Alfonso MS (2015) Regional differences in perivascular adipose tissue impacting vascular homeostasis. Trends Endocrinol Metab 26:367–375. https://doi.org/10.1016/j.tem.2015.04.003

    CAS  Article  PubMed  Google Scholar 

  52. Giordano A, Frontini A, Cinti S (2016) Convertible visceral fat as a therapeutic target to curb obesity. Nat Rev Drug Discov 15:405–424. https://doi.org/10.1038/nrd.2016.31

    CAS  Article  PubMed  Google Scholar 

  53. Guerra C, Koza RA, Yamashita H, Walsh K, Kozak LP (1998) Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J Clin Invest 102:412–420. https://doi.org/10.1172/JCI3155

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Hankir MK, Klingenspor M (2018) Brown adipocyte glucose metabolism: a heated subject. EMBO Rep 19:e46404. https://doi.org/10.15252/embr.201846404

  55. Hausman GJ, Basu U, Du M, Fernyhough-Culver M, Dodson MV (2014) Intermuscular and intramuscular adipose tissues: bad vs. good adipose tissues. Adipocyte 3:242–255. https://doi.org/10.4161/adip.28546

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Heaton JM (1972) The distribution of brown adipose tissue in the human. J Anat 112:35–39. https://doi.org/10.3389/fendo.2018.00447

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S (2000) Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol 279:C670-681. https://doi.org/10.1152/ajpcell.2000.279.3.C670

    CAS  Article  PubMed  Google Scholar 

  58. Hung CS, Lee JK, Yang CY, Hsieh HR, Ma WY, Lin MS, Liu PH, Shih SR, Liou JM, Chuang LM, Chen MF, Lin JW, Wei JN, Li HY (2014) Measurement of visceral fat: should we include retroperitoneal fat? PLoS ONE 9:e112355. https://doi.org/10.1371/journal.pone.0112355

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Iacobellis G (2009) Epicardial and pericardial fat: close, but very different. Obesity (silver Spring) 17:625. https://doi.org/10.1038/oby.2008.575

    Article  Google Scholar 

  60. Iacobellis G (2015) Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nat Rev Endocrinol 11:363–371. https://doi.org/10.1038/nrendo.2015.58

    CAS  Article  PubMed  Google Scholar 

  61. Ibrahim MM (2010) Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev 11:11–18. https://doi.org/10.1111/j.1467-789X.2009.00623.x

    Article  PubMed  Google Scholar 

  62. Ikeda K, Maretich P, Kajimura S (2018) The common and distinct features of brown and beige adipocytes. Trends Endocrinol Metab 29:191–200. https://doi.org/10.1016/j.tem.2018.01.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Ishibashi J, Seale P (2010) Medicine. Beige can be slimming. Science 328:1113–1114. https://doi.org/10.1126/science.1190816

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Jeffery E, Wing A, Holtrup B, Sebo Z, Kaplan JL, Saavedra-Pena R, Church CD, Colman L, Berry R, Rodeheffer MS (2016) The adipose tissue microenvironment regulates depot-specific adipogenesis in obesity. Cell Metab 24:142–150. https://doi.org/10.1016/j.cmet.2016.05.012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Jespersen NZ, Feizi A, Andersen ES, Heywood S, Hattel HB, Daugaard S, Peijs L, Bagi P, Feldt-Rasmussen B, Schultz HS, Hansen NS, Krogh-Madsen R, Pedersen BK, Petrovic N, Nielsen S, Scheele C (2019) Heterogeneity in the perirenal region of humans suggests presence of dormant brown adipose tissue that contains brown fat precursor cells. Mol Metab 24:30–43. https://doi.org/10.1016/j.molmet.2019.03.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Kajimura S (2017) Adipose tissue in 2016: Advances in the understanding of adipose tissue biology. Nat Rev Endocrinol 13:69–70. https://doi.org/10.1038/nrendo.2016.211

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Kajimura S, Spiegelman BM, Seale P (2015) Brown and beige fat: physiological roles beyond heat generation. Cell Metab 22:546–559. https://doi.org/10.1016/j.cmet.2015.09.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Kim JS, Kim SW, Lee JS, Lee SK, Abbott R, Lee KY, Lim HE, Sung KC, Cho GY, Koh KK, Kim SH, Shin C, Kim SH (2021) Association of pericardial adipose tissue with left ventricular structure and function: a region-specific effect? Cardiovasc Diabetol 20:26. https://doi.org/10.1186/s12933-021-01219-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Komolka K, Albrecht E, Wimmers K, Michal JJ, Maak S (2014) Molecular heterogeneities of adipose depots—potential effects on adipose-muscle cross-talk in humans, mice and farm animals. J Genomics 2:31–44. https://doi.org/10.7150/jgen.5260

    Article  PubMed  PubMed Central  Google Scholar 

  70. Krief S, Lonnqvist F, Raimbault S, Baude B, Van Spronsen A, Arner P, Strosberg AD, Ricquier D, Emorine LJ (1993) Tissue distribution of beta 3-adrenergic receptor mRNA in man. J Clin Invest 91:344–349. https://doi.org/10.1172/JCI116191

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Kruglikov IL, Scherer PE (2016) Dermal adipocytes: from irrelevance to metabolic targets? Trends Endocrinol Metab 27:1–10. https://doi.org/10.1016/j.tem.2015.11.002

    CAS  Article  PubMed  Google Scholar 

  72. Lee KH, Kim NH (2019) Differential expression of adipocyte-related molecules in the distal epididymal fat of mouse during postnatal period. Dev Reprod 23:213–221. https://doi.org/10.12717/DR.2019.23.3.213

  73. Lee YH, Petkova AP, Mottillo EP, Granneman JG (2012) In vivo identification of bipotential adipocyte progenitors recruited by beta3-adrenoceptor activation and high-fat feeding. Cell Metab 15:480–491. https://doi.org/10.1016/j.cmet.2012.03.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. Lee MJ, Wu Y, Fried SK (2013) Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol Aspects Med 34:1–11. https://doi.org/10.1016/j.mam.2012.10.001

    CAS  Article  PubMed  Google Scholar 

  75. Leitner BP, Huang S, Brychta RJ, Duckworth CJ, Baskin AS, Mcgehee S, Tal I, Dieckmann W, Gupta G, Kolodny GM, Pacak K, Herscovitch P, Cypess AM, Chen KY (2017) Mapping of human brown adipose tissue in lean and obese young men. Proc Natl Acad Sci USA 114:8649–8654. https://doi.org/10.1073/pnas.1705287114

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Li Z, Hardij J, Bagchi DP, Scheller EL, Macdougald OA (2018) Development, regulation, metabolism and function of bone marrow adipose tissues. Bone 110:134–140. https://doi.org/10.1016/j.bone.2018.01.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Li L, Ma L, Zhao Z, Luo S, Gong B, Li J, Feng J, Zhang H, Qi W, Zhou T, Yang X, Gao G, Yang Z (2021) IL-25-induced shifts in macrophage polarization promote development of beige fat and improve metabolic homeostasis in mice. PLoS Biol 19:e3001348. https://doi.org/10.1371/journal.pbio.3001348

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. Lidell ME, Betz MJ, Dahlqvist Leinhard O, Heglind M, Elander L, Slawik M, Mussack T, Nilsson D, Romu T, Nuutila P, Virtanen KA, Beuschlein F, Persson A, Borga M, Enerback S (2013) Evidence for two types of brown adipose tissue in humans. Nat Med 19:631–634. https://doi.org/10.1038/nm.3017

    CAS  Article  PubMed  Google Scholar 

  79. Lidell ME, Betz MJ, Enerback S (2014) Brown adipose tissue and its therapeutic potential. J Intern Med 276:364–377. https://doi.org/10.1111/joim.12255

    CAS  Article  PubMed  Google Scholar 

  80. Mann A, Thompson A, Robbins N, Blomkalns AL (2014) Localization, identification, and excision of murine adipose depots. J vis Exp. https://doi.org/10.3791/52174

    Article  PubMed  PubMed Central  Google Scholar 

  81. Mantatzis M, Milousis T, Katergari S, Delistamatis A, Papachristou DN, Prassopoulos P (2014) Abdominal adipose tissue distribution on MRI and diabetes. Acad Radiol 21:667–674. https://doi.org/10.1016/j.acra.2014.01.009

    Article  PubMed  Google Scholar 

  82. Mattacks CA, Sadler D, Pond CM (2003) The cellular structure and lipid/protein composition of adipose tissue surrounding chronically stimulated lymph nodes in rats. J Anat 202:551–561. https://doi.org/10.1046/j.1469-7580.2003.00188.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Meisinger C, Doring A, Thorand B, Heier M, Lowel H (2006) Body fat distribution and risk of type 2 diabetes in the general population: are there differences between men and women? The MONICA/KORA Augsburg cohort study. Am J Clin Nutr 84:483–489. https://doi.org/10.1093/ajcn/84.3.483

    CAS  Article  PubMed  Google Scholar 

  84. Mirbolooki MR, Upadhyay SK, Constantinescu CC, Pan ML, Mukherjee J (2014) Adrenergic pathway activation enhances brown adipose tissue metabolism: a [(1)(8)F]FDG PET/CT study in mice. Nucl Med Biol 41:10–16. https://doi.org/10.1016/j.nucmedbio.2013.08.009

    CAS  Article  PubMed  Google Scholar 

  85. Mo Q, Salley J, Roshan T, Baer LA, May FJ, Jaehnig EJ, Lehnig AC, Guo X, Tong Q, Nuotio-Antar AM, Shamsi F, Tseng YH, Stanford KI, Chen MH (2017) Identification and characterization of a supraclavicular brown adipose tissue in mice. JCI Insight 2:e93166. https://doi.org/10.1172/jci.insight.93166

    Article  PubMed Central  Google Scholar 

  86. Nauli AM, Matin S (2019) Why do men accumulate abdominal visceral fat? Front Physiol 10:1486. https://doi.org/10.3389/fphys.2019.01486

    Article  PubMed  PubMed Central  Google Scholar 

  87. Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460:259–263. https://doi.org/10.1038/nature08099

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. Negron SG, Xu B, Lin Z (2021) Isolating brown adipocytes from murine interscapular brown adipose tissue for gene and protein expression analysis. J vis Exp. https://doi.org/10.3791/62332

    Article  PubMed  Google Scholar 

  89. Nicholls DG (2006) The physiological regulation of uncoupling proteins. Biochim Biophys Acta 1757:459–466. https://doi.org/10.1016/j.bbabio.2006.02.005

    CAS  Article  PubMed  Google Scholar 

  90. O’connell J, Lynch L, Cawood TJ, Kwasnik A, Nolan N, Geoghegan J, Mccormick A, O’farrelly C, O’shea D (2010) The relationship of omental and subcutaneous adipocyte size to metabolic disease in severe obesity. PLoS ONE 5:e9997. https://doi.org/10.1371/journal.pone.0009997

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. Odegaard JI, Lee MW, Sogawa Y, Bertholet AM, Locksley RM, Weinberg DE, Kirichok Y, Deo RC, Chawla A (2016) Perinatal licensing of thermogenesis by IL-33 and ST2. Cell 166:841–854. https://doi.org/10.1016/j.cell.2016.06.040

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J (2010) Chronic peroxisome proliferator-activated receptor gamma (PPAR gamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285:7153–7164. https://doi.org/10.1074/jbc.M109.053942

    CAS  Article  PubMed  Google Scholar 

  93. Pilkington AC, Paz HA, Wankhade UD (2021) Beige adipose tissue identification and marker specificity-overview. Front Endocrinol (lausanne) 12:599134. https://doi.org/10.3389/fendo.2021.599134

    Article  Google Scholar 

  94. Pischon T, Boeing H, Hoffmann K, Bergmann M, Schulze MB, Overvad K, Van Der Schouw YT, Spencer E, Moons KG, Tjonneland A, Halkjaer J, Jensen MK, Stegger J, Clavel-Chapelon F, Boutron-Ruault MC, Chajes V, Linseisen J, Kaaks R, Trichopoulou A, Trichopoulos D, Bamia C, Sieri S, Palli D, Tumino R, Vineis P, Panico S, Peeters PH, May AM, Bueno-De-Mesquita HB, Van Duijnhoven FJ, Hallmans G, Weinehall L, Manjer J, Hedblad B, Lund E, Agudo A, Arriola L, Barricarte A, Navarro C, Martinez C, Quiros JR, Key T, Bingham S, Khaw KT, Boffetta P, Jenab M, Ferrari P, Riboli E (2008) General and abdominal adiposity and risk of death in Europe. N Engl J Med 359:2105–2120. https://doi.org/10.1056/NEJMoa0801891

    CAS  Article  PubMed  Google Scholar 

  95. Police SB, Thatcher SE, Charnigo R, Daugherty A, Cassis LA (2009) Obesity promotes inflammation in periaortic adipose tissue and angiotensin II-induced abdominal aortic aneurysm formation. Arterioscler Thromb Vasc Biol 29:1458–1464. https://doi.org/10.1161/ATVBAHA.109.192658

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. Poloni A, Maurizi G, Serrani F, Mancini S, Zingaretti MC, Frontini A, Cinti S, Olivieri A, Leoni P (2013) Molecular and functional characterization of human bone marrow adipocytes. Exp Hematol 41:558–566. https://doi.org/10.1016/j.exphem.2013.02.005

    CAS  Article  PubMed  Google Scholar 

  97. Pond CM (2005) Adipose tissue and the immune system. Prostagland Leukot Essent Fatty Acids 73:17–30. https://doi.org/10.1016/j.plefa.2005.04.005

    CAS  Article  Google Scholar 

  98. Richert MM, Schwertfeger KL, Ryder JW, Anderson SM (2000) An atlas of mouse mammary gland development. J Mammary Gland Biol Neoplasia 5:227–241. https://doi.org/10.1023/a:1026499523505

    CAS  Article  PubMed  Google Scholar 

  99. Sackmann-Sala L, Berryman DE, Munn RD, Lubbers ER, Kopchick JJ (2012) Heterogeneity among white adipose tissue depots in male C57BL/6J mice. Obesity (silver Spring) 20:101–111. https://doi.org/10.1038/oby.2011.235

    CAS  Article  Google Scholar 

  100. Sacks H, Symonds ME (2013) Anatomical locations of human brown adipose tissue: functional relevance and implications in obesity and type 2 diabetes. Diabetes 62:1783–1790. https://doi.org/10.2337/db12-1430

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  101. Sacks HS, Fain JN (2007) Human epicardial adipose tissue: a review. Am Heart J 153:907–917. https://doi.org/10.1016/j.ahj.2007.03.019

    CAS  Article  PubMed  Google Scholar 

  102. Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, Iwanaga T, Miyagawa M, Kameya T, Nakada K, Kawai Y, Tsujisaki M (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58:1526–1531. https://doi.org/10.2337/db09-0530

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. Sanchez-Gurmaches J, Guertin DA (2014) Adipocyte lineages: tracing back the origins of fat. Biochim Biophys Acta 1842:340–351. https://doi.org/10.1016/j.bbadis.2013.05.027

    CAS  Article  PubMed  Google Scholar 

  104. Sanchez-Gurmaches J, Hung CM, Guertin DA (2016) Emerging complexities in adipocyte origins and identity. Trends Cell Biol 26:313–326. https://doi.org/10.1016/j.tcb.2016.01.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. Scheller EL, Cawthorn WP, Burr AA, Horowitz MC, Macdougald OA (2016) Marrow adipose tissue: trimming the fat. Trends Endocrinol Metab 27:392–403. https://doi.org/10.1016/j.tem.2016.03.016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  106. Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J, Cohen P, Cinti S, Spiegelman BM (2011) Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest 121:96–105. https://doi.org/10.1172/JCI44271

    CAS  Article  PubMed  Google Scholar 

  107. Shao M, Wang QA, Song A, Vishvanath L, Busbuso NC, Scherer PE, Gupta RK (2019) Cellular origins of beige fat cells revisited. Diabetes 68:1874–1885. https://doi.org/10.2337/db19-0308

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  108. Shen W, Wang Z, Punyanita M, Lei J, Sinav A, Kral JG, Imielinska C, Ross R, Heymsfield SB (2003) Adipose tissue quantification by imaging methods: a proposed classification. Obes Res 11:5–16. https://doi.org/10.1038/oby.2003.3

    Article  PubMed  PubMed Central  Google Scholar 

  109. Sluse FE, Jarmuszkiewicz W, Navet R, Douette P, Mathy G, Sluse-Goffart CM (2006) Mitochondrial UCPs: new insights into regulation and impact. Biochim Biophys Acta 1757:480–485. https://doi.org/10.1016/j.bbabio.2006.02.004

    CAS  Article  PubMed  Google Scholar 

  110. Smith U (2015) Abdominal obesity: a marker of ectopic fat accumulation. J Clin Invest 125:1790–1792. https://doi.org/10.1172/JCI81507

    Article  PubMed  PubMed Central  Google Scholar 

  111. Snel M, Jonker JT, Schoones J, Lamb H, De Roos A, Pijl H, Smit JW, Meinders AE, Jazet IM (2012) Ectopic fat and insulin resistance: pathophysiology and effect of diet and lifestyle interventions. Int J Endocrinol 2012:983814. https://doi.org/10.1155/2012/983814

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. Stern JH, Rutkowski JM, Scherer PE (2016) Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab 23:770–784. https://doi.org/10.1016/j.cmet.2016.04.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  113. Suchacki KJ, Stimson RH (2021) Nutritional regulation of human brown adipose tissue. Nutrients 13:1748. https://doi.org/10.3390/nu13061748

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  114. Suchacki KJ, Cawthorn WP, Rosen CJ (2016) Bone marrow adipose tissue: formation, function and regulation. Curr Opin Pharmacol 28:50–56. https://doi.org/10.1016/j.coph.2016.03.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  115. Sugiyama M, Shindo D, Kanada N, Ohzeki T, Yoshioka K, Funaba M, Hashimoto O (2019) Inducible brown/beige adipocytes in retro-orbital adipose tissues. Exp Eye Res 184:8–14. https://doi.org/10.1016/j.exer.2019.03.021

    CAS  Article  PubMed  Google Scholar 

  116. Svensson PA, Lindberg K, Hoffmann JM, Taube M, Pereira MJ, Mohsen-Kanson T, Hafner AL, Rizell M, Palming J, Dani C, Svensson MK (2014) Characterization of brown adipose tissue in the human perirenal depot. Obesity (silver Spring) 22:1830–1837. https://doi.org/10.1002/oby.20765

    CAS  Article  Google Scholar 

  117. Talman AH, Psaltis PJ, Cameron JD, Meredith IT, Seneviratne SK, Wong DT (2014) Epicardial adipose tissue: far more than a fat depot. Cardiovasc Diagn Ther 4:416–429. https://doi.org/10.3978/j.issn.2223-3652.2014.11.05

    Article  PubMed  PubMed Central  Google Scholar 

  118. Tan P, Pepin E, Lavoie JL (2018) Mouse adipose tissue collection and processing for RNA analysis. J vis Exp. https://doi.org/10.3791/57026

    Article  PubMed  PubMed Central  Google Scholar 

  119. Tanaka M, Okada H, Hashimoto Y, Kumagai M, Nishimura H, Fukui M (2020) Intraperitoneal, but not retroperitoneal, visceral adipose tissue is associated with diabetes mellitus: a cross-sectional, retrospective pilot analysis. Diabetol Metab Syndr 12:103. https://doi.org/10.1186/s13098-020-00612-5

    Article  PubMed  PubMed Central  Google Scholar 

  120. Tchernof A, Despres JP (2013) Pathophysiology of human visceral obesity: an update. Physiol Rev 93:359–404. https://doi.org/10.1152/physrev.00033.2011

    CAS  Article  PubMed  Google Scholar 

  121. Thyagarajan B, Foster MT (2017) Beiging of white adipose tissue as a therapeutic strategy for weight loss in humans. Horm Mol Biol Clin Investig 31:20170016. https://doi.org/10.1515/hmbci-2017-0016

    CAS  Article  Google Scholar 

  122. Ursino MG, Vasina V, Raschi E, Crema F, De Ponti F (2009) The beta3-adrenoceptor as a therapeutic target: current perspectives. Pharmacol Res 59:221–234. https://doi.org/10.1016/j.phrs.2009.01.002

    CAS  Article  PubMed  Google Scholar 

  123. Van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508. https://doi.org/10.1056/NEJMoa0808718

    Article  PubMed  Google Scholar 

  124. Villarroya F, Cereijo R, Villarroya J, Giralt M (2017) Brown adipose tissue as a secretory organ. Nat Rev Endocrinol 13:26–35. https://doi.org/10.1038/nrendo.2016.136

    CAS  Article  PubMed  Google Scholar 

  125. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S, Nuutila P (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525. https://doi.org/10.1056/NEJMoa0808949

    CAS  Article  PubMed  Google Scholar 

  126. Vitali A, Murano I, Zingaretti MC, Frontini A, Ricquier D, Cinti S (2012) The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J Lipid Res 53:619–629. https://doi.org/10.1194/jlr.M018846

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  127. Walden TB, Hansen IR, Timmons JA, Cannon B, Nedergaard J (2012) Recruited vs. nonrecruited molecular signatures of brown, “brite,” and white adipose tissues. Am J Physiol Endocrinol Metab 302:E19-31. https://doi.org/10.1152/ajpendo.00249.2011

    CAS  Article  PubMed  Google Scholar 

  128. Walker GE, Marzullo P, Ricotti R, Bona G, Prodam F (2014) The pathophysiology of abdominal adipose tissue depots in health and disease. Horm Mol Biol Clin Investig 19:57–74. https://doi.org/10.1515/hmbci-2014-0023

    CAS  Article  PubMed  Google Scholar 

  129. Wang H, Willershauser M, Karlas A, Gorpas D, Reber J, Ntziachristos V, Maurer S, Fromme T, Li Y, Klingenspor M (2019) A dual Ucp1 reporter mouse model for imaging and quantitation of brown and brite fat recruitment. Mol Metab 20:14–27. https://doi.org/10.1016/j.molmet.2018.11.009

    CAS  Article  PubMed  Google Scholar 

  130. Wang X, Yu C, Feng J, Chen J, Jiang Q, Kuang S, Wang Y (2017) Depot-specific differences in fat mass expansion in WT and ob/ob mice. Oncotarget 8:46326–46336. https://doi.org/10.18632/oncotarget.17938

  131. Wheeler GL, Shi R, Beck SR, Langefeld CD, Lenchik L, Wagenknecht LE, Freedman BI, Rich SS, Bowden DW, Chen MY, Carr JJ (2005) Pericardial and visceral adipose tissues measured volumetrically with computed tomography are highly associated in type 2 diabetic families. Invest Radiol 40:97–101. https://doi.org/10.1097/00004424-200502000-00007

    Article  PubMed  Google Scholar 

  132. Wong CX, Ganesan AN, Selvanayagam JB (2017) Epicardial fat and atrial fibrillation: current evidence, potential mechanisms, clinical implications, and future directions. Eur Heart J 38:1294–1302. https://doi.org/10.1093/eurheartj/ehw045

    CAS  Article  PubMed  Google Scholar 

  133. Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, Van Marken Lichtenbelt WD, Hoeks J, Enerback S, Schrauwen P, Spiegelman BM (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376. https://doi.org/10.1016/j.cell.2012.05.016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  134. Yamaguchi Y, Cavallero S, Patterson M, Shen H, Xu J, Kumar SR, Sucov HM (2015) Adipogenesis and epicardial adipose tissue: a novel fate of the epicardium induced by mesenchymal transformation and PPARgamma activation. Proc Natl Acad Sci U S A 112:2070–2075. https://doi.org/10.1073/pnas.1417232112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  135. Young P, Arch JR, Ashwell M (1984) Brown adipose tissue in the parametrial fat pad of the mouse. FEBS Lett 167:10–14. https://doi.org/10.1016/0014-5793(84)80822-4

    CAS  Article  PubMed  Google Scholar 

  136. Yu H, Emont M, Jun H, Wu J (2018) Isolation and differentiation of murine primary brown/beige preadipocytes. Methods Mol Biol 1773:273–282. https://doi.org/10.1007/978-1-4939-7799-4_21

    CAS  Article  PubMed  Google Scholar 

  137. Yudasaka M, Yomogida Y, Zhang M, Nakahara M, Kobayashi N, Tanaka T, Okamatsu-Ogura Y, Saeki K, Kataura H (2018) Fasting-dependent vascular permeability enhancement in brown adipose tissues evidenced by using carbon nanotubes as fluorescent probes. Sci Rep 8:14446. https://doi.org/10.1038/s41598-018-32758-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  138. Yun KH, Rhee SJ, Yoo NJ, Oh SK, Kim NH, Jeong JW, Park DS, Park HY (2009) Relationship between the echocardiographic epicardial adipose tissue thickness and serum adiponectin in patients with angina. J Cardiovasc Ultrasound 17:121–126. https://doi.org/10.4250/jcu.2009.17.4.121

    Article  PubMed  PubMed Central  Google Scholar 

  139. Zhang F, Hao G, Shao M, Nham K, An Y, Wang Q, Zhu Y, Kusminski CM, Hassan G, Gupta RK, Zhai Q, Sun X, Scherer PE, Oz OK (2018) An adipose tissue atlas: an image-guided identification of human-like BAT and beige depots in rodents. Cell Metab 27:252–262. https://doi.org/10.1016/j.cmet.2017.12.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  140. Zhang Z, Shao M, Hepler C, Zi Z, Zhao S, An YA, Zhu Y, Ghaben AL, Wang MY, Li N, Onodera T, Joffin N, Crewe C, Zhu Q, Vishvanath L, Kumar A, Xing C, Wang QA, Gautron L, Deng Y, Gordillo R, Kruglikov I, Kusminski CM, Gupta RK, Scherer PE (2019) Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice. J Clin Invest 129:5327–5342. https://doi.org/10.1172/JCI130239

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  141. Zhang Y, Hao J, Tarrago MG, Warner GM, Giorgadze N, Wei Q, Huang Y, He K, Chen C, Peclat TR, White TA, Ling K, Tchkonia T, Kirkland JL, Chini EN, Hu J (2021) FBF1 deficiency promotes beiging and healthy expansion of white adipose tissue. Cell Rep 36:109481. https://doi.org/10.1016/j.celrep.2021.109481

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  142. Zingaretti MC, Crosta F, Vitali A, Guerrieri M, Frontini A, Cannon B, Nedergaard J, Cinti S (2009) The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J 23:3113–3120. https://doi.org/10.1096/fj.09-133546

    CAS  Article  PubMed  Google Scholar 

  143. Zuriaga MA, Fuster JJ, Gokce N, Walsh K (2017) Humans and mice display opposing patterns of “browning” gene expression in visceral and subcutaneous white adipose tissue depots. Front Cardiovasc Med 4:27. https://doi.org/10.3389/fcvm.2017.00027

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  144. Zwick RK, Guerrero-Juarez CF, Horsley V, Plikus MV (2018) Anatomical, physiological, and functional diversity of adipose tissue. Cell Metab 27:68–83. https://doi.org/10.1016/j.cmet.2017.12.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author would like to thank Minsun Ahn for artworks. This study was supported by grants from the Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Education (2016R1D1A1B01012515) and from the Gachon University research fund (Grant No. GCU-202008420012).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kwang-Hoon Chun.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chun, KH. Mouse model of the adipose organ: the heterogeneous anatomical characteristics. Arch. Pharm. Res. 44, 857–875 (2021). https://doi.org/10.1007/s12272-021-01350-6

Download citation

Keywords

  • White adipose tissue
  • Brown adipose tissue
  • Beige adipose tissue
  • Adipose organ
  • Visceral
  • Subcutaneous
  • Mice model