Skip to main content

Understanding of sarcopenia: from definition to therapeutic strategies

Abstract

Sarcopenia refers to the gradual loss of skeletal muscle mass and function along with aging and is a social burden due to growing healthcare cost associated with a super-aging society. Therefore, researchers have established guidelines and tests to diagnose sarcopenia. Several studies have been conducted actively to reveal the cause of sarcopenia and find an economic therapy to improve the quality of life in elderly individuals. Sarcopenia is caused by multiple factors such as reduced regenerative capacity, imbalance in protein turnover, alteration of fat and fibrotic composition in muscle, increased reactive oxygen species, dysfunction of mitochondria and increased inflammation. Based on these mechanisms, nonpharmacological and pharmacological strategies have been developed to prevent and treat sarcopenia. Although several studies are currently in progress, no treatment is available yet. This review presents the definition of sarcopenia and summarizes recent understanding on the detailed mechanisms, diagnostic criteria, and strategies for prevention and treatment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Ali S, Garcia JM (2014) Sarcopenia, cachexia and aging: diagnosis, mechanisms and therapeutic options—a mini-review. Gerontology 60:294–305. https://doi.org/10.1159/000356760

    CAS  Article  PubMed  Google Scholar 

  2. Almada AE, Wagers AJ (2016) Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. Nat Rev Mol Cell Biol 17:267–279. https://doi.org/10.1038/nrm.2016.7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Alonso AC, Ribeiro SM, Luna NMS, Peterson MD, Bocalini DS, Serra MM, Brech GC, Greve JMD, Garcez-Leme LE (2018) Association between handgrip strength, balance, and knee flexion/extension strength in older adults. PLoS ONE 13:e0198185. https://doi.org/10.1371/journal.pone.0198185

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Arias E, Cuervo AM (2011) Chaperone-mediated autophagy in protein quality control. Curr Opin Cell Biol 23:184–189. https://doi.org/10.1016/j.ceb.2010.10.009

    CAS  Article  PubMed  Google Scholar 

  5. Atkinson RA, Srinivas-Shankar U, Roberts SA, Connolly MJ, Adams JE, Oldham JA, Wu FC, Seynnes OR, Stewart CE, Maganaris CN, Narici MV (2010) Effects of testosterone on skeletal muscle architecture in intermediate-frail and frail elderly men. J Gerontol A Biol Sci Med Sci 65:1215–1219. https://doi.org/10.1093/gerona/glq118

    CAS  Article  PubMed  Google Scholar 

  6. Avgustinova A, Benitah SA (2016) Epigenetic control of adult stem cell function. Nat Rev Mol Cell Biol 17:643–658. https://doi.org/10.1038/nrm.2016.76

    CAS  Article  PubMed  Google Scholar 

  7. Bae GU, Kim BG, Lee HJ, Oh JE, Lee SJ, Zhang W, Krauss RS, Kang JS (2009) Cdo binds Abl to promote p38alpha/beta mitogen-activated protein kinase activity and myogenic differentiation. Mol Cell Biol 29:4130–4143. https://doi.org/10.1128/MCB.00199-09

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Barbieri E, Sestili P (2012) Reactive oxygen species in skeletal muscle signaling. J Signal Transduct 2012:982794. https://doi.org/10.1155/2012/982794

    CAS  Article  PubMed  Google Scholar 

  9. Bechir N, Pecchi E, Relizani K, Vilmen C, Le Fur Y, Bernard M, Amthor H, Bendahan D, Giannesini B (2016) Mitochondrial impairment induced by postnatal ActRIIB blockade does not alter function and energy status in exercising mouse glycolytic muscle in vivo. Am J Physiol Endocrinol Metab 310:E539-549. https://doi.org/10.1152/ajpendo.00370.2015

    Article  PubMed  Google Scholar 

  10. Beharry AW, Sandesara PB, Roberts BM, Ferreira LF, Senf SM, Judge AR (2014) HDAC1 activates FoxO and is both sufficient and required for skeletal muscle atrophy. J Cell Sci 127:1441–1453. https://doi.org/10.1242/jcs.136390

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Bentzinger CF, Wang YX, Rudnicki MA (2012) Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a008342

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bernet JD, Doles JD, Hall JK, Kelly Tanaka K, Carter TA, Olwin BB (2014) p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med 20:265–271. https://doi.org/10.1038/nm.3465

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Bian AL, Hu HY, Rong YD, Wang J, Wang JX, Zhou XZ (2017) A study on relationship between elderly sarcopenia and inflammatory factors IL-6 and TNF-alpha. Eur J Med Res 22:25. https://doi.org/10.1186/s40001-017-0266-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Bischoff HA, Stahelin HB, Monsch AU, Iversen MD, Weyh A, von Dechend M, Akos R, Conzelmann M, Dick W, Theiler R (2003) Identifying a cut-off point for normal mobility: a comparison of the timed “up and go” test in community-dwelling and institutionalised elderly women. Age Ageing 32:315–320. https://doi.org/10.1093/ageing/32.3.315

    Article  PubMed  Google Scholar 

  15. Blau HM, Cosgrove BD, Ho AT (2015) The central role of muscle stem cells in regenerative failure with aging. Nat Med 21:854–862. https://doi.org/10.1038/nm.3918

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Boonsanay V, Zhang T, Georgieva A, Kostin S, Qi H, Yuan X, Zhou Y, Braun T (2016) Regulation of skeletal muscle stem cell quiescence by Suv4-20h1-dependent facultative heterochromatin formation. Cell Stem Cell 18:229–242. https://doi.org/10.1016/j.stem.2015.11.002

    CAS  Article  PubMed  Google Scholar 

  17. Braga M, Sinha Hikim AP, Datta S, Ferrini MG, Brown D, Kovacheva EL, Gonzalez-Cadavid NF, Sinha-Hikim I (2008) Involvement of oxidative stress and caspase 2-mediated intrinsic pathway signaling in age-related increase in muscle cell apoptosis in mice. Apoptosis 13:822–832. https://doi.org/10.1007/s10495-008-0216-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Bua E, Johnson J, Herbst A, Delong B, McKenzie D, Salamat S, Aiken JM (2006) Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am J Hum Genet 79:469–480. https://doi.org/10.1086/507132

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Buckinx F, Landi F, Cesari M, Fielding RA, Visser M, Engelke K, Maggi S, Dennison E, Al-Daghri NM, Allepaerts S, Bauer J, Bautmans I, Brandi ML, Bruyere O, Cederholm T, Cerreta F, Cherubini A, Cooper C, Cruz-Jentoft A, McCloskey E, Dawson-Hughes B, Kaufman JM, Laslop A, Petermans J, Reginster JY, Rizzoli R, Robinson S, Rolland Y, Rueda R, Vellas B, Kanis JA (2018) Pitfalls in the measurement of muscle mass: a need for a reference standard. J Cachexia Sarcopenia Muscle 9:269–278. https://doi.org/10.1002/jcsm.12268

    Article  PubMed  PubMed Central  Google Scholar 

  20. Calvani R, Marini F, Cesari M, Tosato M, Anker SD, von Haehling S, Miller RR, Bernabei R, Landi F, Marzetti E, SPRINTT consortium (2015) Biomarkers for physical frailty and sarcopenia: state of the science and future developments. J Cachexia Sarcopenia Muscle 6:278–286. https://doi.org/10.1002/jcsm.12051

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chakkalakal JV, Jones KM, Basson MA, Brack AS (2012) The aged niche disrupts muscle stem cell quiescence. Nature 490:355–360. https://doi.org/10.1038/nature11438

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, Chou MY, Chen LY, Hsu PS, Krairit O, Lee JS, Lee WJ, Lee Y, Liang CK, Limpawattana P, Lin CS, Peng LN, Satake S, Suzuki T, Won CW, Wu CH, Wu SN, Zhang T, Zeng P, Akishita M, Arai H (2014) Sarcopenia in Asia: consensus report of the Asian working group for sarcopenia. J Am Med Dir Assoc 15:95–101. https://doi.org/10.1016/j.jamda.2013.11.025

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, Carter C, Yu BP, Leeuwenburgh C (2009) Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev 8:18–30. https://doi.org/10.1016/j.arr.2008.07.002

    CAS  Article  PubMed  Google Scholar 

  24. Cisternas P, Henriquez JP, Brandan E, Inestrosa NC (2014) Wnt signaling in skeletal muscle dynamics: myogenesis, neuromuscular synapse and fibrosis. Mol Neurobiol 49:574–589. https://doi.org/10.1007/s12035-013-8540-5

    CAS  Article  PubMed  Google Scholar 

  25. Cooper C, Dere W, Evans W, Kanis JA, Rizzoli R, Sayer AA, Sieber CC, Kaufman JM, Abellan van Kan G, Boonen S, Adachi J, Mitlak B, Tsouderos Y, Rolland Y, Reginster JY (2012) Frailty and sarcopenia: definitions and outcome parameters. Osteoporos Int 23:1839–1848. https://doi.org/10.1007/s00198-012-1913-1

    CAS  Article  PubMed  Google Scholar 

  26. Cosgrove BD, Gilbert PM, Porpiglia E, Mourkioti F, Lee SP, Corbel SY, Llewellyn ME, Delp SL, Blau HM (2014) Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med 20:255–264. https://doi.org/10.1038/nm.3464

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinkova E, Vandewoude M, Zamboni M, European Working Group on Sarcopenia in Older P (2010) Sarcopenia: European consensus on definition and diagnosis: report of the european working group on sarcopenia in older people. Age Ageing 39:412–423. https://doi.org/10.1093/ageing/afq034

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M, Writing Group for the European Working Group on Sarcopenia in Older People 2 and EWGSOP2 tEGf (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48:601–601. https://doi.org/10.1093/ageing/afz046

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cruz-Jentoft AJ, Sayer AA (2019) Sarcopenia. Lancet 393:2636–2646. https://doi.org/10.1016/S0140-6736(19)31138-9

    Article  PubMed  Google Scholar 

  30. Curcio F, Liguori I, Cellulare M, Sasso G, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P (2019) Physical activity scale for the elderly (PASE) score is related to sarcopenia in noninstitutionalized older adults. J Geriatr Phys Ther 42:130–135. https://doi.org/10.1519/JPT.0000000000000139

    Article  PubMed  Google Scholar 

  31. Dalton JT, Barnette KG, Bohl CE, Hancock ML, Rodriguez D, Dodson ST, Morton RA, Steiner MS (2011) The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: results of a double-blind, placebo-controlled phase II trial. J Cachexia Sarcopenia Muscle 2:153–161. https://doi.org/10.1007/s13539-011-0034-6

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dardevet D, Sornet C, Balage M, Grizard J (2000) Stimulation of in vitro rat muscle protein synthesis by leucine decreases with age. J Nutr 130:2630–2635. https://doi.org/10.1093/jn/130.11.2630

    CAS  Article  PubMed  Google Scholar 

  33. De Dobbeleer L, Beyer I, Hansen AM, Molbo D, Mortensen EL, Lund R, Bautmans I (2019) Grip work measurement with the jamar dynamometer: validation of a simple equation for clinical use. J Nutr Health Aging 23:221–224. https://doi.org/10.1007/s12603-019-1155-4

    Article  PubMed  Google Scholar 

  34. De la Fuente M, Miquel J (2009) An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging. Curr Pharm Des 15:3003–3026. https://doi.org/10.2174/138161209789058110

    Article  PubMed  PubMed Central  Google Scholar 

  35. Deer RR, Volpi E (2015) Protein intake and muscle function in older adults. Curr Opin Clin Nutr Metab Care 18:248–253. https://doi.org/10.1097/mco.0000000000000162

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Dennison EM, Sayer AA, Cooper C (2017) Epidemiology of sarcopenia and insight into possible therapeutic targets. Nat Rev Rheumatol 13:340–347. https://doi.org/10.1038/nrrheum.2017.60

    CAS  Article  PubMed  Google Scholar 

  37. Dever TE, Hinnebusch AG (2005) GCN2 whets the appetite for amino acids. Mol Cell 18:141–142. https://doi.org/10.1016/j.molcel.2005.03.023

    CAS  Article  PubMed  Google Scholar 

  38. Dodds RM, Granic A, Davies K, Kirkwood TBL, Jagger C, Sayer AA (2017) Prevalence and incidence of sarcopenia in the very old: findings from the Newcastle 85+ Study. J Cachexia Sarcopenia Muscle 8:229–237. https://doi.org/10.1002/jcsm.12157

    Article  PubMed  Google Scholar 

  39. Doehner W, Anker SD (2002) Cardiac cachexia in early literature: a review of research prior to Medline. Int J Cardiol 85:7–14. https://doi.org/10.1016/S0167-5273(02)00230-9

    Article  PubMed  Google Scholar 

  40. Dong Y, Silva KA, Dong Y, Zhang L (2014) Glucocorticoids increase adipocytes in muscle by affecting IL-4 regulated FAP activity. FASEB J 28:4123–4132. https://doi.org/10.1096/fj.14-254011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Dressel U, Bailey PJ, Wang SC, Downes M, Evans RM, Muscat GE (2001) A dynamic role for HDAC7 in MEF2-mediated muscle differentiation. J Biol Chem 276:17007–17013. https://doi.org/10.1074/jbc.M101508200

    CAS  Article  PubMed  Google Scholar 

  42. Duarte JP, Valente-Dos-Santos J, Costa D, Coelho ESMJ, Deprez D, Philippaerts R, Lenoir M, Vaeyens R, Malina RM (2018) Multilevel modelling of longitudinal changes in isokinetic knee extensor and flexor strength in adolescent soccer players. Ann Hum Biol 45:453–456. https://doi.org/10.1080/03014460.2018.1521470

    Article  PubMed  Google Scholar 

  43. Elkina Y, von Haehling S, Anker SD, Springer J (2011) The role of myostatin in muscle wasting: an overview. J Cachexia Sarcopenia Muscle 2:143–151. https://doi.org/10.1007/s13539-011-0035-5

    Article  PubMed  PubMed Central  Google Scholar 

  44. Evans WJ, Morley JE, Argiles J, Bales C, Baracos V, Guttridge D, Jatoi A, Kalantar-Zadeh K, Lochs H, Mantovani G, Marks D, Mitch WE, Muscaritoli M, Najand A, Ponikowski P, Rossi Fanelli F, Schambelan M, Schols A, Schuster M, Thomas D, Wolfe R, Anker SD (2008) Cachexia: a new definition. Clin Nutr 27:793–799. https://doi.org/10.1016/j.clnu.2008.06.013

    CAS  Article  PubMed  Google Scholar 

  45. Falcon LJ, Harris-Love MO (2017) Sarcopenia and the new ICD-10-CM code: screening, staging, and diagnosis considerations. Fed Pract 34:24–32

    PubMed  PubMed Central  Google Scholar 

  46. Feiring DC, Ellenbecker TS, Derscheid GL (1990) Test-retest reliability of the biodex isokinetic dynamometer. J Orthop Sports Phys Ther 11:298–300. https://doi.org/10.2519/jospt.1990.11.7.298

    CAS  Article  PubMed  Google Scholar 

  47. Ferrando AA, Tipton KD, Doyle D, Phillips SM, Cortiella J, Wolfe RR (1998) Testosterone injection stimulates net protein synthesis but not tissue amino acid transport. Am J Physiol 275:E864-871. https://doi.org/10.1152/ajpendo.1998.275.5.E864

    CAS  Article  PubMed  Google Scholar 

  48. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254. https://doi.org/10.1111/j.1749-6632.2000.tb06651.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA, Cardiovascular Health Study Collaborative Research G (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A 56:M146-156. https://doi.org/10.1093/gerona/56.3.m146

    CAS  Article  Google Scholar 

  50. Garikipati DK, Rodgers BD (2012) Myostatin inhibits myosatellite cell proliferation and consequently activates differentiation: evidence for endocrine-regulated transcript processing. J Endocrinol 215:177–187. https://doi.org/10.1530/JOE-12-0260

    CAS  Article  PubMed  Google Scholar 

  51. Gielen E, O’Neill TW, Pye SR, Adams JE, Wu FC, Laurent MR, Claessens F, Ward KA, Boonen S, Bouillon R, Vanderschueren D, Verschueren S (2015) Endocrine determinants of incident sarcopenia in middle-aged and elderly European men. J Cachexia Sarcopenia Muscle 6:242–252. https://doi.org/10.1002/jcsm.12030

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gingrich A, Volkert D, Kiesswetter E, Thomanek M, Bach S, Sieber CC, Zopf Y (2019) Prevalence and overlap of sarcopenia, frailty, cachexia and malnutrition in older medical inpatients. BMC Geriatr 19:120. https://doi.org/10.1186/s12877-019-1115-1

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gonzalez MC, Barbosa-Silva TG, Heymsfield SB (2018) Bioelectrical impedance analysis in the assessment of sarcopenia. Curr Opin Clin Nutr Metab Care 21:366–374. https://doi.org/10.1097/MCO.0000000000000496

    Article  PubMed  Google Scholar 

  54. Goodpaster BH, Thaete FL, Kelley DE (2000) Composition of skeletal muscle evaluated with computed tomography. Ann N Y Acad Sci 904:18–24. https://doi.org/10.1111/j.1749-6632.2000.tb06416.x

    CAS  Article  PubMed  Google Scholar 

  55. Gouspillou G, Sgarioto N, Kapchinsky S, Purves-Smith F, Norris B, Pion CH, Barbat-Artigas S, Lemieux F, Taivassalo T, Morais JA, Aubertin-Leheudre M, Hepple RT (2014) Increased sensitivity to mitochondrial permeability transition and myonuclear translocation of endonuclease G in atrophied muscle of physically active older humans. FASEB J 28:1621–1633. https://doi.org/10.1096/fj.13-242750

    CAS  Article  PubMed  Google Scholar 

  56. Guerra RS, Amaral TF (2009) Comparison of hand dynamometers in elderly people. J Nutr Health Aging 13:907–912. https://doi.org/10.1007/s12603-009-0250-3

    CAS  Article  PubMed  Google Scholar 

  57. Gumucio JP, Mendias CL (2013) Atrogin-1, MuRF-1, and sarcopenia. Endocrine 43:12–21. https://doi.org/10.1007/s12020-012-9751-7

    CAS  Article  PubMed  Google Scholar 

  58. Hamrick MW, McGee-Lawrence ME, Frechette DM (2016) Fatty infiltration of skeletal muscle: mechanisms and comparisons with bone marrow adiposity. Front Endocrinol (lausanne) 7:69. https://doi.org/10.3389/fendo.2016.00069

    Article  Google Scholar 

  59. Haran PH, Rivas DA, Fielding RA (2012) Role and potential mechanisms of anabolic resistance in sarcopenia. J Cachexia Sarcopenia Muscle 3:157–162. https://doi.org/10.1007/s13539-012-0068-4

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hartmann A, Knols R, Murer K, de Bruin ED (2009) Reproducibility of an isokinetic strength-testing protocol of the knee and ankle in older adults. Gerontology 55:259–268. https://doi.org/10.1159/000172832

    Article  PubMed  Google Scholar 

  61. Hogrel JY (2015) Grip strength measured by high precision dynamometry in healthy subjects from 5 to 80 years. BMC Musculoskelet Disord 16:139. https://doi.org/10.1186/s12891-015-0612-4

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hughes DC, Stewart CE, Sculthorpe N, Dugdale HF, Yousefian F, Lewis MP, Sharples AP (2016) Testosterone enables growth and hypertrophy in fusion impaired myoblasts that display myotube atrophy: deciphering the role of androgen and IGF-I receptors. Biogerontology 17:619–639. https://doi.org/10.1007/s10522-015-9621-9

    CAS  Article  PubMed  Google Scholar 

  63. Ivannikov MV, Van Remmen H (2015) Sod1 gene ablation in adult mice leads to physiological changes at the neuromuscular junction similar to changes that occur in old wild-type mice. Free Radic Biol Med 84:254–262. https://doi.org/10.1016/j.freeradbiomed.2015.03.021

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Jeong HJ, Lee SJ, Lee HJ, Kim HB, Anh Vuong T, Cho H, Bae GU, Kang JS (2020) Prmt7 promotes myoblast differentiation via methylation of p38MAPK on arginine residue 70. Cell Death Differ 27:573–586. https://doi.org/10.1038/s41418-019-0373-y

    CAS  Article  PubMed  Google Scholar 

  65. Joe AW, Yi L, Natarajan A, Le Grand F, So L, Wang J, Rudnicki MA, Rossi FM (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12:153–163. https://doi.org/10.1038/ncb2015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Kamel HK, Maas D, Duthie EH Jr (2002) Role of hormones in the pathogenesis and management of sarcopenia. Drugs Aging 19:865–877. https://doi.org/10.2165/00002512-200219110-00004

    CAS  Article  PubMed  Google Scholar 

  67. Kang JS, Krauss RS (2010) Muscle stem cells in developmental and regenerative myogenesis. Curr Opin Clin Nutr Metab Care 13:243–248. https://doi.org/10.1097/MCO.0b013e328336ea98

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Kastner S, Elias MC, Rivera AJ, Yablonka-Reuveni Z (2000) Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells. J Histochem Cytochem 48:1079–1096. https://doi.org/10.1177/002215540004800805

    CAS  Article  PubMed  Google Scholar 

  69. Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR (2006) A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol Endocrinol Metab 291:E381-387. https://doi.org/10.1152/ajpendo.00488.2005

    CAS  Article  PubMed  Google Scholar 

  70. Keren A, Tamir Y, Bengal E (2006) The p38 MAPK signaling pathway: a major regulator of skeletal muscle development. Mol Cell Endocrinol 252:224–230. https://doi.org/10.1016/j.mce.2006.03.017

    CAS  Article  PubMed  Google Scholar 

  71. Kim TN, Choi KM (2013) Sarcopenia: definition, epidemiology, and pathophysiology. J Bone Metab 20:1–10. https://doi.org/10.11005/jbm.2013.20.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kim G, Kim JH (2020) Impact of skeletal muscle mass on metabolic health. Endocrinol Metab (seoul) 35:1–6. https://doi.org/10.3803/EnM.2020.35.1.1

    Article  Google Scholar 

  73. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141. https://doi.org/10.1038/ncb2152

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. Kimura N, Kumamoto T, Oniki T, Nomura M, Nakamura K, Abe Y, Hazama Y, Ueyama H (2009) Role of ubiquitin-proteasome proteolysis in muscle fiber destruction in experimental chloroquine-induced myopathy. Muscle Nerve 39:521–528. https://doi.org/10.1002/mus.21223

    CAS  Article  PubMed  Google Scholar 

  75. Kwak JY, Kwon KS (2019) Pharmacological interventions for treatment of sarcopenia: current status of drug development for sarcopenia. Ann Geriatr Med Res 23:98–104. https://doi.org/10.4235/agmr.19.0028

    Article  PubMed  PubMed Central  Google Scholar 

  76. Le Couteur DG, Solon-Biet SM, Cogger VC, Ribeiro R, de Cabo R, Raubenheimer D, Cooney GJ, Simpson SJ (2020) Branched chain amino acids, aging and age-related health. Ageing Res Rev 64:101198. https://doi.org/10.1016/j.arr.2020.101198

    CAS  Article  PubMed  Google Scholar 

  77. Li J, Han S, Cousin W, Conboy IM (2015) Age-specific functional epigenetic changes in p21 and p16 in injury-activated satellite cells. Stem Cells 33:951–961. https://doi.org/10.1002/stem.1908

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. Liguori I, Russo G, Aran L, Bulli G, Curcio F, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P (2018) Sarcopenia: assessment of disease burden and strategies to improve outcomes. Clin Interv Aging 13:913–927. https://doi.org/10.2147/CIA.S149232

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Ling BM, Bharathy N, Chung TK, Kok WK, Li S, Tan YH, Rao VK, Gopinadhan S, Sartorelli V, Walsh MJ, Taneja R (2012) Lysine methyltransferase G9a methylates the transcription factor MyoD and regulates skeletal muscle differentiation. Proc Natl Acad Sci USA 109:841–846. https://doi.org/10.1073/pnas.1111628109

    Article  PubMed  PubMed Central  Google Scholar 

  80. Liu L, Cheung TH, Charville GW, Hurgo BM, Leavitt T, Shih J, Brunet A, Rando TA (2013) Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Rep 4:189–204. https://doi.org/10.1016/j.celrep.2013.05.043

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. Lu J, McKinsey TA, Nicol RL, Olson EN (2000) Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci USA 97:4070–4075. https://doi.org/10.1073/pnas.080064097

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. Luo L, Martin SC, Parkington J, Cadena SM, Zhu J, Ibebunjo C, Summermatter S, Londraville N, Patora-Komisarska K, Widler L, Zhai H, Trendelenburg AU, Glass DJ, Shi J (2019) HDAC4 controls muscle homeostasis through deacetylation of myosin heavy chain, PGC-1alpha, and Hsc70. Cell Rep 29(749–763):e712. https://doi.org/10.1016/j.celrep.2019.09.023

    CAS  Article  Google Scholar 

  83. Manini TM, Clark BC (2012) Dynapenia and aging: an update. J Gerontol A Biol Sci Med Sci 67:28–40. https://doi.org/10.1093/gerona/glr010

    Article  PubMed  Google Scholar 

  84. Marzetti E, Wohlgemuth SE, Lees HA, Chung HY, Giovannini S, Leeuwenburgh C (2008) Age-related activation of mitochondrial caspase-independent apoptotic signaling in rat gastrocnemius muscle. Mech Ageing Dev 129:542–549. https://doi.org/10.1016/j.mad.2008.05.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. Masiero E, Sandri M (2010) Autophagy inhibition induces atrophy and myopathy in adult skeletal muscles. Autophagy 6:307–309. https://doi.org/10.4161/auto.6.2.11137

    CAS  Article  PubMed  Google Scholar 

  86. McCormick R, Vasilaki A (2018) Age-related changes in skeletal muscle: changes to life-style as a therapy. Biogerontology 19:519–536. https://doi.org/10.1007/s10522-018-9775-3

    Article  PubMed  PubMed Central  Google Scholar 

  87. McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R (2003) Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 162:1135–1147. https://doi.org/10.1083/jcb.200207056

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. McPhee JS, French DP, Jackson D, Nazroo J, Pendleton N, Degens H (2016) Physical activity in older age: perspectives for healthy ageing and frailty. Biogerontology 17:567–580. https://doi.org/10.1007/s10522-016-9641-0

    Article  PubMed  PubMed Central  Google Scholar 

  89. Mecocci P, Fanó G, Fulle S, MacGarvey U, Shinobu L, Polidori MC, Cherubini A, Vecchiet J, Senin U, Beal MF (1999) Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic Biol Med 26:303–308. https://doi.org/10.1016/s0891-5849(98)00208-1

    CAS  Article  PubMed  Google Scholar 

  90. Meng SJ, Yu LJ (2010) Oxidative stress, molecular inflammation and sarcopenia. Int J Mol Sci 11:1509–1526. https://doi.org/10.3390/ijms11041509

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. Minet AD, Gaster M (2012) Cultured senescent myoblasts derived from human vastus lateralis exhibit normal mitochondrial ATP synthesis capacities with correlating concomitant ROS production while whole cell ATP production is decreased. Biogerontology 13:277–285. https://doi.org/10.1007/s10522-012-9372-9

    CAS  Article  PubMed  Google Scholar 

  92. Miquel J, Economos AC, Fleming J, Johnson JE Jr (1980) Mitochondrial role in cell aging. Exp Gerontol 15:575–591. https://doi.org/10.1016/0531-5565(80)90010-8

    CAS  Article  PubMed  Google Scholar 

  93. Mitchell WK, Phillips BE, Williams JP, Rankin D, Smith K, Lund JN, Atherton PJ (2013) Development of a new SonovueTM contrast-enhanced ultrasound approach reveals temporal and age-related features of muscle microvascular responses to feeding. Physiol Rep 1:e00119. https://doi.org/10.1002/phy2.119

    Article  PubMed  PubMed Central  Google Scholar 

  94. Morley JE, Abbatecola AM, Argiles JM, Baracos V, Bauer J, Bhasin S, Cederholm T, Coats AJ, Cummings SR, Evans WJ, Fearon K, Ferrucci L, Fielding RA, Guralnik JM, Harris TB, Inui A, Kalantar-Zadeh K, Kirwan BA, Mantovani G, Muscaritoli M, Newman AB, Rossi-Fanelli F, Rosano GM, Roubenoff R, Schambelan M, Sokol GH, Storer TW, Vellas B, von Haehling S, Yeh SS, Anker SD, Society on Sarcopenia C and Wasting Disorders Trialist W (2011) Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc 12:403–409. https://doi.org/10.1016/j.jamda.2011.04.014

    Article  PubMed  PubMed Central  Google Scholar 

  95. Morvan F, Rondeau JM, Zou C, Minetti G, Scheufler C, Scharenberg M, Jacobi C, Brebbia P, Ritter V, Toussaint G, Koelbing C, Leber X, Schilb A, Witte F, Lehmann S, Koch E, Geisse S, Glass DJ, Lach-Trifilieff E (2017) Blockade of activin type II receptors with a dual anti-ActRIIA/IIB antibody is critical to promote maximal skeletal muscle hypertrophy. Proc Natl Acad Sci USA 114:12448–12453. https://doi.org/10.1073/pnas.1707925114

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. Mosoni L, Gatineau E, Gatellier P, Migne C, Savary-Auzeloux I, Remond D, Rocher E, Dardevet D (2014) High whey protein intake delayed the loss of lean body mass in healthy old rats, whereas protein type and polyphenol/antioxidant supplementation had no effects. PLoS ONE 9:e109098. https://doi.org/10.1371/journal.pone.0109098

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. Munoz-Espin D, Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15:482–496. https://doi.org/10.1038/nrm3823

    CAS  Article  PubMed  Google Scholar 

  98. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10:458–467. https://doi.org/10.1038/nrm2708

    CAS  Article  PubMed  Google Scholar 

  99. Neel BA, Lin Y, Pessin JE (2013) Skeletal muscle autophagy: a new metabolic regulator. Trends Endocrinol Metab 24:635–643. https://doi.org/10.1016/j.tem.2013.09.004

    CAS  Article  PubMed  Google Scholar 

  100. Ogawa S, Yakabe M, Akishita M (2016) Age-related sarcopenia and its pathophysiological bases. Inflamm Regen 36:17. https://doi.org/10.1186/s41232-016-0022-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  101. Osawa Y, Studenski SA, Ferrucci L (2018) Knee extension rate of torque development and peak torque: associations with lower extremity function. J Cachexia Sarcopenia Muscle 9:530–539. https://doi.org/10.1002/jcsm.12285

    Article  PubMed  PubMed Central  Google Scholar 

  102. Pal M, Khan J, Kumar R, Surolia A, Gupta S (2019) Testosterone supplementation improves insulin responsiveness in HFD fed male T2DM mice and potentiates insulin signaling in the skeletal muscle and C2C12 myocyte cell line. PLoS ONE 14:e0224162. https://doi.org/10.1371/journal.pone.0224162

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. Palomero J, Vasilaki A, Pye D, McArdle A, Jackson MJ (2013) Aging increases the oxidation of dichlorohydrofluorescein in single isolated skeletal muscle fibers at rest, but not during contractions. Am J Physiol Regul Integr Comp Physiol 305:R351-358. https://doi.org/10.1152/ajpregu.00530.2012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. Pavasini R, Guralnik J, Brown JC, di Bari M, Cesari M, Landi F, Vaes B, Legrand D, Verghese J, Wang C, Stenholm S, Ferrucci L, Lai JC, Bartes AA, Espaulella J, Ferrer M, Lim JY, Ensrud KE, Cawthon P, Turusheva A, Frolova E, Rolland Y, Lauwers V, Corsonello A, Kirk GD, Ferrari R, Volpato S, Campo G (2016) Short physical performance battery and all-cause mortality: systematic review and meta-analysis. BMC Med 14:215. https://doi.org/10.1186/s12916-016-0763-7

    Article  PubMed  PubMed Central  Google Scholar 

  105. Pawlikowski B, Vogler TO, Gadek K, Olwin BB (2017) Regulation of skeletal muscle stem cells by fibroblast growth factors. Dev Dyn 246:359–367. https://doi.org/10.1002/dvdy.24495

    CAS  Article  PubMed  Google Scholar 

  106. Pedersen M, Bruunsgaard H, Weis N, Hendel HW, Andreassen BU, Eldrup E, Dela F, Pedersen BK (2003) Circulating levels of TNF-alpha and IL-6-relation to truncal fat mass and muscle mass in healthy elderly individuals and in patients with type-2 diabetes. Mech Ageing Dev 124:495–502. https://doi.org/10.1016/S0047-6374(03)00027-7

    CAS  Article  PubMed  Google Scholar 

  107. Peterson SJ, Mozer M (2017) Differentiating sarcopenia and cachexia among patients with cancer. Nutr Clin Pract 32:30–39. https://doi.org/10.1177/0884533616680354

    Article  PubMed  Google Scholar 

  108. Peterson MD, Rhea MR, Sen A, Gordon PM (2010) Resistance exercise for muscular strength in older adults: a meta-analysis. Ageing Res Rev 9:226–237. https://doi.org/10.1016/j.arr.2010.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  109. Peterson MD, Sen A, Gordon PM (2011) Influence of resistance exercise on lean body mass in aging adults: a meta-analysis. Med Sci Sports Exerc 43:249–258. https://doi.org/10.1249/MSS.0b013e3181eb6265

    Article  PubMed  PubMed Central  Google Scholar 

  110. Philip B, Lu Z, Gao Y (2005) Regulation of GDF-8 signaling by the p38 MAPK. Cell Signal 17:365–375. https://doi.org/10.1016/j.cellsig.2004.08.003

    CAS  Article  PubMed  Google Scholar 

  111. Pigna E, Renzini A, Greco E, Simonazzi E, Fulle S, Mancinelli R, Moresi V, Adamo S (2018) HDAC4 preserves skeletal muscle structure following long-term denervation by mediating distinct cellular responses. Skelet Muscle 8:6. https://doi.org/10.1186/s13395-018-0153-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. Pohl C, Dikic I (2019) Cellular quality control by the ubiquitin-proteasome system and autophagy. Science 366:818. https://doi.org/10.1126/science.aax3769

    CAS  Article  PubMed  Google Scholar 

  113. Prod’homme M, Rieu I, Balage M, Dardevet D, Grizard J (2004) Insulin and amino acids both strongly participate to the regulation of protein metabolism. Curr Opin Clin Nutr Metab Care 7:71–77

    CAS  Article  Google Scholar 

  114. Richards LG, Olson B, Palmiter-Thomas P (1996) How forearm position affects grip strength. Am J Occup Ther 50:133–138. https://doi.org/10.5014/ajot.50.2.133

    CAS  Article  PubMed  Google Scholar 

  115. Rieu I, Magne H, Savary-Auzeloux I, Averous J, Bos C, Peyron MA, Combaret L, Dardevet D (2009) Reduction of low grade inflammation restores blunting of postprandial muscle anabolism and limits sarcopenia in old rats. J Physiol 587:5483–5492. https://doi.org/10.1113/jphysiol.2009.178319

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  116. Roberts HC, Denison HJ, Martin HJ, Patel HP, Syddall H, Cooper C, Sayer AA (2011) A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing 40:423–429. https://doi.org/10.1093/ageing/afr051

    Article  PubMed  Google Scholar 

  117. Robinson SM, Reginster JY, Rizzoli R, Shaw SC, Kanis JA, Bautmans I, Bischoff-Ferrari H, Bruyère O, Cesari M, Dawson-Hughes B, Fielding RA, Kaufman JM, Landi F, Malafarina V, Rolland Y, van Loon LJ, Vellas B, Visser M, Cooper C, Al-Daghri N, Allepaerts S, Bauer J, Brandi ML, Cederholm T, Cherubini A, Cruz Jentoft A, Laviano A, Maggi S, McCloskey EV, Petermans J, Roubenoff R, Rueda R (2018) Does nutrition play a role in the prevention and management of sarcopenia? Clin Nutr 37:1121–1132. https://doi.org/10.1016/j.clnu.2017.08.016

    CAS  Article  PubMed  Google Scholar 

  118. Rodriguez J, Vernus B, Chelh I, Cassar-Malek I, Gabillard JC, Hadj Sassi A, Seiliez I, Picard B, Bonnieu A (2014) Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways. Cell Mol Life Sci 71:4361–4371. https://doi.org/10.1007/s00018-014-1689-x

    CAS  Article  PubMed  Google Scholar 

  119. Rong S, Wang L, Peng Z, Liao Y, Li D, Yang X, Nuessler AK, Liu L, Bao W, Yang W (2020) The mechanisms and treatments for sarcopenia: could exosomes be a perspective research strategy in the future? J Cachexia Sarcopenia Muscle 11:348–365. https://doi.org/10.1002/jcsm.12536

    Article  PubMed  PubMed Central  Google Scholar 

  120. Rosenberg IH (1997) Sarcopenia: origins and clinical relevance. J Nutr 127:990S-991S. https://doi.org/10.1093/jn/127.5.990S

    CAS  Article  PubMed  Google Scholar 

  121. Ryall JG, Dell’Orso S, Derfoul A, Juan A, Zare H, Feng X, Clermont D, Koulnis M, Gutierrez-Cruz G, Fulco M, Sartorelli V (2015) The NAD(+)-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 16:171–183. https://doi.org/10.1016/j.stem.2014.12.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  122. Sakellariou GK, Pearson T, Lightfoot AP, Nye GA, Wells N, Giakoumaki II, Vasilaki A, Griffiths RD, Jackson MJ, McArdle A (2016) Mitochondrial ROS regulate oxidative damage and mitophagy but not age-related muscle fiber atrophy. Sci Rep 6:33944. https://doi.org/10.1038/srep33944

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  123. Sandiford SD, Kennedy KA, Xie X, Pickering JG, Li SS (2014) Dual oxidase maturation factor 1 (DUOXA1) overexpression increases reactive oxygen species production and inhibits murine muscle satellite cell differentiation. Cell Commun Signal 12:5. https://doi.org/10.1186/1478-811X-12-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  124. Sandri M (2010) Autophagy in health and disease. 3. Involvement of autophagy in muscle atrophy. Am J Physiol Cell Physiol 298:C1291-1297. https://doi.org/10.1152/ajpcell.00531.2009

    CAS  Article  PubMed  Google Scholar 

  125. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–412. https://doi.org/10.1016/s0092-8674(04)00400-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  126. Sanz-Paris A, Camprubi-Robles M, Lopez-Pedrosa JM, Pereira SL, Rueda R, Ballesteros-Pomar MD, Garcia Almeida JM, Cruz-Jentoft AJ (2018) Role of oral nutritional supplements enriched with beta-hydroxy-beta-methylbutyrate in maintaining muscle function and improving clinical outcomes in various clinical settings. J Nutr Health Aging 22:664–675. https://doi.org/10.1007/s12603-018-0995-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  127. Sartori R, Romanello V, Sandri M (2021) Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat Commun 12:330. https://doi.org/10.1038/s41467-020-20123-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  128. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760. https://doi.org/10.1038/sj.emboj.7601623

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  129. Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M (2013) Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 280:4294–4314. https://doi.org/10.1111/febs.12253

    CAS  Article  PubMed  Google Scholar 

  130. Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786. https://doi.org/10.1016/s0092-8674(00)00066-0

    CAS  Article  PubMed  Google Scholar 

  131. Shefer G, Van de Mark DP, Richardson JB, Yablonka-Reuveni Z (2006) Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol 294:50–66. https://doi.org/10.1016/j.ydbio.2006.02.022

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  132. Singh SS, Kumar A, Welch N, Sekar J, Mishra S, Bellar A, Gangadhariah M, Attaway A, Al Khafaji H, Wu X, Pathak V, Agrawal V, McMullen MR, Hornberger TA, Nagy LE, Davuluri G, Dasarathy S (2021) Multiomics-identified intervention to restore ethanol-induced dysregulated proteostasis and secondary sarcopenia in alcoholic liver disease. Cell Physiol Biochem 55:91–116. https://doi.org/10.33594/000000327

    CAS  Article  PubMed  Google Scholar 

  133. Sinha-Hikim I, Artaza J, Woodhouse L, Gonzalez-Cadavid N, Singh AB, Lee MI, Storer TW, Casaburi R, Shen R, Bhasin S (2002) Testosterone-induced increase in muscle size in healthy young men is associated with muscle fiber hypertrophy. Am J Physiol Endocrinol Metab 283:E154-164. https://doi.org/10.1152/ajpendo.00502.2001

    CAS  Article  PubMed  Google Scholar 

  134. Smith GI, Julliand S, Reeds DN, Sinacore DR, Klein S, Mittendorfer B (2015) Fish oil-derived n-3 PUFA therapy increases muscle mass and function in healthy older adults. Am J Clin Nutr 102:115–122. https://doi.org/10.3945/ajcn.114.105833

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  135. Standley RA, Distefano G, Trevino MB, Chen E, Narain NR, Greenwood B, Kondakci G, Tolstikov VV, Kiebish MA, Yu G, Qi F, Kelly DP, Vega RB, Coen PM, Goodpaster BH (2020) Skeletal muscle energetics and mitochondrial function are impaired following 10 days of bed rest in older adults. J Gerontol A 75:1744–1753. https://doi.org/10.1093/gerona/glaa001

    CAS  Article  Google Scholar 

  136. Steffl M, Stastny P (2020) Isokinetic testing of muscle strength of older individuals with sarcopenia or frailty: a systematic review. Isokinet Exerc Sci 28:291–301. https://doi.org/10.3233/IES-201148

    Article  Google Scholar 

  137. Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, Ferrucci L, Guralnik JM, Fragala MS, Kenny AM, Kiel DP, Kritchevsky SB, Shardell MD, Dam TT, Vassileva MT (2014) The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A 69:547–558. https://doi.org/10.1093/gerona/glu010

    Article  Google Scholar 

  138. Syverud BC, VanDusen KW, Larkin LM (2016) Growth factors for skeletal muscle tissue engineering. Cells Tissues Organs 202:169–179. https://doi.org/10.1159/000444671

    CAS  Article  PubMed  Google Scholar 

  139. Takaesu G, Kang JS, Bae GU, Yi MJ, Lee CM, Reddy EP, Krauss RS (2006) Activation of p38alpha/beta MAPK in myogenesis via binding of the scaffold protein JLP to the cell surface protein Cdo. J Cell Biol 175:383–388. https://doi.org/10.1083/jcb.200608031

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  140. Thalacker-Mercer AE, Dell’Italia LJ, Cui X, Cross JM, Bamman MM (2010) Differential genomic responses in old vs. young humans despite similar levels of modest muscle damage after resistance loading. Physiol Genomics 40:141–149. https://doi.org/10.1152/physiolgenomics.00151.2009

    CAS  Article  PubMed  Google Scholar 

  141. Tiainen K, Hurme M, Hervonen A, Luukkaala T, Jylha M (2010) Inflammatory markers and physical performance among nonagenarians. J Gerontol A 65:658–663. https://doi.org/10.1093/gerona/glq056

    CAS  Article  Google Scholar 

  142. Ticinesi A, Meschi T, Narici MV, Lauretani F, Maggio M (2017) Muscle ultrasound and sarcopenia in older individuals: a clinical perspective. J Am Med Dir Assoc 18:290–300. https://doi.org/10.1016/j.jamda.2016.11.013

    Article  PubMed  Google Scholar 

  143. Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ (2009) Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol 296:C1258-1270. https://doi.org/10.1152/ajpcell.00105.2009

    CAS  Article  PubMed  Google Scholar 

  144. Tseng YC, Kulp SK, Lai IL, Hsu EC, He WA, Frankhouser DE, Yan PS, Mo X, Bloomston M, Lesinski GB, Marcucci G, Guttridge DC, Bekaii-Saab T, Chen CS (2015) Preclinical investigation of the novel histone deacetylase inhibitor AR-42 in the treatment of cancer-induced cachexia. J Natl Cancer Inst 107:djv274. https://doi.org/10.1093/jnci/djv274

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  145. van der Pouw Kraan TC, van Gaalen FA, Huizinga TW, Pieterman E, Breedveld FC, Verweij CL (2003) Discovery of distinctive gene expression profiles in rheumatoid synovium using cDNA microarray technology: evidence for the existence of multiple pathways of tissue destruction and repair. Genes Immun 4:187–196. https://doi.org/10.1038/sj.gene.6363975

    CAS  Article  PubMed  Google Scholar 

  146. Vinel C, Lukjanenko L, Batut A, Deleruyelle S, Pradere JP, Le Gonidec S, Dortignac A, Geoffre N, Pereira O, Karaz S, Lee U, Camus M, Chaoui K, Mouisel E, Bigot A, Mouly V, Vigneau M, Pagano AF, Chopard A, Pillard F, Guyonnet S, Cesari M, Burlet-Schiltz O, Pahor M, Feige JN, Vellas B, Valet P, Dray C (2018) The exerkine apelin reverses age-associated sarcopenia. Nat Med 24:1360–1371. https://doi.org/10.1038/s41591-018-0131-6

    CAS  Article  PubMed  Google Scholar 

  147. Volpato S, Bianchi L, Cherubini A, Landi F, Maggio M, Savino E, Bandinelli S, Ceda GP, Guralnik JM, Zuliani G, Ferrucci L (2014) Prevalence and clinical correlates of sarcopenia in community-dwelling older people: application of the EWGSOP definition and diagnostic algorithm J. Gerontol A Biol Sci Med Sci 69:438–446. https://doi.org/10.1093/gerona/glt149

    CAS  Article  Google Scholar 

  148. von Haehling S, Morley JE, Anker SD (2010) An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J Cachexia Sarcopenia Muscle 1:129–133. https://doi.org/10.1007/s13539-010-0014-2

    Article  Google Scholar 

  149. Wahlin-Larsson B, Wilkinson DJ, Strandberg E, Hosford-Donovan A, Atherton PJ, Kadi F (2017) Mechanistic links underlying the impact of C-reactive protein on muscle mass in elderly. Cell Physiol Biochem 44:267–278. https://doi.org/10.1159/000484679

    Article  PubMed  Google Scholar 

  150. Walsh ME, Van Remmen H (2016) Emerging roles for histone deacetylases in age-related muscle atrophy. Nutr Healthy Aging 4:17–30. https://doi.org/10.3233/NHA-160005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  151. Walsh ME, Bhattacharya A, Sataranatarajan K, Qaisar R, Sloane L, Rahman MM, Kinter M, Van Remmen H (2015) The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging. Aging Cell 14:957–970. https://doi.org/10.1111/acel.12387

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  152. Wanagat J, Cao Z, Pathare P, Aiken JM (2001) Mitochondrial DNA deletion mutations colocalize with segmental electron transport system abnormalities, muscle fiber atrophy, fiber splitting, and oxidative damage in sarcopenia. FASEB J 15:322–332. https://doi.org/10.1096/fj.00-0320com

    CAS  Article  PubMed  Google Scholar 

  153. Wang X, Proud CG (2006) The mTOR pathway in the control of protein synthesis. Physiology (bethesda) 21:362–369. https://doi.org/10.1152/physiol.00024.2006

    CAS  Article  Google Scholar 

  154. Washburn RA, McAuley E, Katula J, Mihalko SL, Boileau RA (1999) The physical activity scale for the elderly (PASE): evidence for validity. J Clin Epidemiol 52:643–651. https://doi.org/10.1016/s0895-4356(99)00049-9

    CAS  Article  PubMed  Google Scholar 

  155. Whitman SA, Wacker MJ, Richmond SR, Godard MP (2005) Contributions of the ubiquitin–proteasome pathway and apoptosis to human skeletal muscle wasting with age. Pflugers Arch 450:437–446. https://doi.org/10.1007/s00424-005-1473-8

    CAS  Article  PubMed  Google Scholar 

  156. Wind AE, Takken T, Helders PJ, Engelbert RH (2010) Is grip strength a predictor for total muscle strength in healthy children, adolescents, and young adults? Eur J Pediatr 169:281–287. https://doi.org/10.1007/s00431-009-1010-4

    Article  PubMed  Google Scholar 

  157. Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, Ni Z, Zhang B, Zhang D, Luo F, Chen H, Sun X, Feng JQ, Qi H, Chen L (2020) FGF/FGFR signaling in health and disease. Signal Transduct Target Ther 5:181. https://doi.org/10.1038/s41392-020-00222-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  158. Yoon YS, Yoon DS, Lim IK, Yoon SH, Chung HY, Rojo M, Malka F, Jou MJ, Martinou JC, Yoon G (2006) Formation of elongated giant mitochondria in DFO-induced cellular senescence: involvement of enhanced fusion process through modulation of Fis1. J Cell Physiol 209:468–480. https://doi.org/10.1002/jcp.20753

    CAS  Article  PubMed  Google Scholar 

  159. Zhang T, Gunther S, Looso M, Kunne C, Kruger M, Kim J, Zhou Y, Braun T (2015) Prmt5 is a regulator of muscle stem cell expansion in adult mice. Nat Commun 6:7140. https://doi.org/10.1038/ncomms8140

    CAS  Article  PubMed  Google Scholar 

  160. Zhu P, Zhang C, Gao Y, Wu F, Zhou Y, Wu WS (2019) The transcription factor Slug represses p16(Ink4a) and regulates murine muscle stem cell aging. Nat Commun 10:2568. https://doi.org/10.1038/s41467-019-10479-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2020R1A2C1007555).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Sang-Jin Lee or Gyu-Un Bae.

Ethics declarations

Conflict of interest

Sang-Jin Lee is employee of AniMusCure Inc. The remaining authors declares no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, J.W., Kim, R., Choi, H. et al. Understanding of sarcopenia: from definition to therapeutic strategies. Arch. Pharm. Res. (2021). https://doi.org/10.1007/s12272-021-01349-z

Download citation

Keywords

  • Sarcopenia
  • Aging
  • Skeletal muscle
  • Satellite cell
  • Protein turnover