Skip to main content

Atractylenolides (I, II, and III): a review of their pharmacology and pharmacokinetics

Abstract

Atractylodes macrocephala Koidz is a widely used as a traditional Chinese medicine. Atractylenolides (-I, -II, and -III) are a class of lactone compounds derived from Atractylodes macrocephala Koidz. Research into atractylenolides over the past two decades has shown that atractylenolides have anti-cancer, anti-inflammatory, anti-platelet, anti-osteoporosis, and antibacterial activity; protect the nervous system; and regulate blood glucose and lipids. Because of structural differences, both atractylenolide-I and atractylenolide-II have remarkable anti-cancer activities, and atractylenolide-I and atractylenolide-III have remarkable anti-inflammatory and neuroprotective activities. We therefore recommend further clinical research on the anti-cancer, anti-inflammatory and neuroprotective effects of atractylenolides, determine their therapeutic effects, alone or in combination. To investigate their ability to regulate blood glucose and lipid, as well as their anti-platelet, anti-osteoporosis, and antibacterial activities, both in vitro and in vivo studies are necessary. Atractylenolides are rapidly absorbed but slowly metabolized; thus, solubilization studies may not be necessary. However, due to the inhibitory effects of atractylenolides on metabolic enzymes, it is necessary to pay attention to the possible side effects of combining atractylenolides with other drugs, in clinical application. In short, atractylenolides have considerable medicinal value and warrant further study.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bailly C (2021) Atractylenolides, essential components of Atractylodes-based traditional herbal medicines: Antioxidant, anti-inflammatory and anticancer properties. Eur J Pharmacol. https://doi.org/10.1016/j.ejphar.2020.173735

    Article  PubMed  Google Scholar 

  2. Chan KW, Chung HY, Ho WS (2020) Anti-Tumor activity of atractylenolide I in human colon adenocarcinoma in vitro. Molecules 25:212–221. https://doi.org/10.3390/molecules25010212

    CAS  Article  PubMed Central  Google Scholar 

  3. Chao CL, Huang HC, Lin HC, Chang TC, Chang WL (2016) Sesquiterpenes from baizhu stimulate glucose uptake by activating AMPK and PI3K. Am J Chinese Med 44:963–979. https://doi.org/10.1142/s0192415x16500531

    CAS  Article  Google Scholar 

  4. Chen Y (2017) The mechanism of Atractylodes lactone I inhibiting the proliferation of gastric cancer MGC-803 cells. Chin J Gerontol 37:2385–2387. https://doi.org/10.3969/j.issn.1005-9202.2017.10.016

    Article  Google Scholar 

  5. Chen FF, Hu X (2016) Screening of drug inhibitors towards the hydrolysis metabolism of cerebrovascular treatment drug Clopidogrel. Lat Am J Pharm 35:1678–1680

    CAS  Google Scholar 

  6. Chen YZ, Wu XL, Liu JL, Zhang JF (2015) Atractylenolide II and Atractylenolide III inhibit platelets activities and thrombus formation. J Am Coll Cardiol 66:C44–C44. https://doi.org/10.1016/j.jacc.2015.06.1192

    Article  Google Scholar 

  7. Chen LG, Jan YS, Tsai PW, Norimoto H, Michihara S, Murayarna C, Wang CC (2016) Anti-inflammatory and antinociceptive constituents of atractylodes japonica koidzumi. J Agr Food Chem 64:2254–2262. https://doi.org/10.1021/acs.jafc.5b05841

    CAS  Article  Google Scholar 

  8. Chen QH, Yu F, Wang HM, Ding XR, Zhu J, Liu YS, Zhang L (2017) Effects of atractylodes macrolides I, II, III on cytokine expression of inflammatory macrophages. Chin Pharma. https://doi.org/10.3969/j.issn.1008-049X.2017.12.005

    Article  Google Scholar 

  9. Cheng YZ, Yang WL, Guo LY, Zhang MY, Liu JL, Zhang JF (2019) Anti-platelet effect and mechanism of Atractylenolide III. Int J Pharma Res. https://doi.org/10.13220/j.cnki.jipr.2016.03.021

    Article  Google Scholar 

  10. Choi S, Kim K (2005) Inhibitory effects of the rhizome extract of Atractylodes japonica on the proliferation of human tumor cell lines. Korean J Pharmacogn 36:201–204

    Google Scholar 

  11. Deng S, Wang A, Chen X, Du Q, Wu Y, Chen G, Guo W, Li Y (2019) HBD inhibits the development of colitis-associated cancer in mice via the IL-6R/STAT3 signaling pathway. Int J Mol Sci 20:1069. https://doi.org/10.3390/ijms20051069

    CAS  Article  PubMed Central  Google Scholar 

  12. Dong HY, He LC, Huang M, Dong Y (2008) Anti-inflammatory components isolated from Atractylodes macrocephala Koidz. Nat Prod Res 22:1418–1427. https://doi.org/10.1080/14786410801931629

    CAS  Article  PubMed  Google Scholar 

  13. Feng WW, Ao H, Yue SJ, Peng C (2018) Systems pharmacology reveals the unique mechanism features of Shenzhu Capsule for treatment of ulcerative colitis in comparison with synthetic drugs. Sci Rep-UK. https://doi.org/10.1038/s41598-018-34509-1

    Article  Google Scholar 

  14. Fu X, Yu ZL (2014) Inhibition of STAT3 signalling and tumour cell growth in melanoma by atractylenolide II treatment. Eur J Cancer 50:E26–E26. https://doi.org/10.1016/j.ejca.2014.03.107

    Article  Google Scholar 

  15. Fu XQ, Chou GX, Kwan HY, Tse AK, Zhao LH, Yuen TK, Cao HH, Yu H, Chao XJ, Su T, Cheng BC, Sun XG, Yu ZL (2014) Inhibition of STAT3 signalling contributes to the antimelanoma action of atractylenolide II. Exp Dermatol 23:855–857. https://doi.org/10.1111/exd.12527

    CAS  Article  PubMed  Google Scholar 

  16. Fu XQ, Chou JY, Li T, Zhu PL, Li JK, Yin CL, Su T, Guo H, Lee KW, Hossen MJ, Chou GX, Yu ZL (2018) The JAK2/STAT3 pathway is involved in the anti-melanoma effects of atractylenolide I. Exp Dermatol 27:201–204. https://doi.org/10.1111/exd.13454

    CAS  Article  PubMed  Google Scholar 

  17. Gao XL, Wang BY, Ying SG, Zhang ZY, Cheng YL (2015) Research of atractylenolide on proliferation ability of IEC-6 cells and esophageal cancer ECA9706 cells. Chin J Tradit Chin Med 30:921–923

  18. Gao HY, Zhu XH, Xi Y, Li Q, Shen ZZ, Yang YJ (2018a) Anti-depressant-like effect of atractylenolide I in a mouse model of depression induced by chronic unpredictable mild stress. Exp Ther Med 15:1574–1579. https://doi.org/10.3892/etm.2017.5517

    CAS  Article  PubMed  Google Scholar 

  19. Gao XX, Feng JY, Yang L, Wang P, Jia JP, Qin XM (2018b) Investigation on pharmacochemistry and pharmacokinetics of atractylenolides from Atractylodes in vivo based on UPLC-MS combined with everted gut sac model in vitro. J Liq Chromatogr R T 41:892–902. https://doi.org/10.1080/10826076.2018.1537286

    CAS  Article  Google Scholar 

  20. Gong WX, Zhou YZ, Qin XM, Du GH (2019) Involvement of mitochondrial apoptotic pathway and MAPKs/NF-κB inflammatory pathway in the neuroprotective effect of atractylenolide III in corticosterone-induced PC12 cells. Chin Natural Med 17:264–274. https://doi.org/10.3724/SP.J.1009.2019.00264

    Article  Google Scholar 

  21. Ha H, An H, Shim KS, Kim T, Lee KJ, Hwang YH, Ma JY (2013) Ethanol extract of Atractylodes macrocephala protects bone loss by inhibiting osteoclast differentiation. Molecules 18:7376–7388. https://doi.org/10.3390/molecules18077376

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Hoang LS, Tran MH, Lee JS, Ngo QMT, Woo MH, Min BS (2016) Inflammatory inhibitory activity of sesquiterpenoids from Atractylodes macrocephala rhizomes. Chem Pharm Bull 64:507–511. https://doi.org/10.1248/cpb.c15-00805

    Article  Google Scholar 

  23. Hu LF, Yao ZH, Qin ZF, Liu LY, Song XJ, Dai Y, Kiyohara H, Yamada H, Yao X (2019) In vivo metabolic profiles of Bu-Zhong-Yi-Qi-Tang, a famous traditional Chinese medicine prescription, in rats by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. J Pharmaceut Biomed 171:81–98. https://doi.org/10.1016/j.jpba.2019.04.001

    CAS  Article  Google Scholar 

  24. Huai B, Ding J (2020) Atractylenolide III attenuates bleomycin-induced experimental pulmonary fibrosis and oxidative stress in rat model via Nrf2/NQO1/HO-1 pathway activation. Immunopharm Immunot 42:436–444. https://doi.org/10.1080/08923973.2020.1806871

    CAS  Article  Google Scholar 

  25. Huang JM, Zhang GN, Shi Y, Zha X, Zhu Y, Wang MM, Lin Q, Wang W, Lu HY, Ma SQ, Cheng J, Deng BF (2014) Atractylenolide-I sensitizes human ovarian cancer cells to paclitaxel by blocking activation of TLR4/MyD88-dependent pathway. Sci Rep-UK 4:212–236. https://doi.org/10.1038/srep03840

    CAS  Article  Google Scholar 

  26. Huang HL, Lin TW, Huang YL, Huang RL (2016) Induction of apoptosis and differentiation by atractylenolide-1 isolated from Atractylodes macrocephala in human leukemia cells. Bioorg Med Chem Lett 26:1905–1909. https://doi.org/10.1016/j.bmcl.2016.03.021

    CAS  Article  PubMed  Google Scholar 

  27. Jeong S, Kim SY, Kim SJ, Hwang BS, Kwon TH, Yu KY, Hang SH, Suzuki K, Kim KJ (2010) Antibacterial Activity of phytochemicals isolated from Atractylodes japonica against methicillin-resistant staphylococcus aureus. Molecules 15:7395–7402. https://doi.org/10.3390/molecules15107395

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Jeong YH, Li W, Go Y, Oh YC (2019) Atractylodis rhizoma alba attenuates neuroinflammation in BV2 Microglia upon LPS stimulation by inducing HO-1 activity and inhibiting NF-kappa B and MAPK. Int J Mol Sci 20:674–681. https://doi.org/10.3390/ijms20164015

    CAS  Article  Google Scholar 

  29. Ji GQ, Chen RQ, Zheng JX (2014) Atractylenolide I inhibits lipopolysaccharide-induced inflammatory responses via mitogen-activated protein kinase pathways in RAW264.7 cells. Immunopharm Immunot 36:420–425. https://doi.org/10.3109/08923973.2014.968256

    CAS  Article  Google Scholar 

  30. Ji GQ, Chen RQ, Wang L (2016) Anti-inflammatory activity of atractylenolide III through inhibition of nuclear factor-kappa B and mitogen-activated protein kinase pathways in mouse macrophages. Immunopharm Immunot 38:98–102. https://doi.org/10.3109/08923973.2015.1122617

    CAS  Article  Google Scholar 

  31. Jiang H, Shi J, Li Y (2011) Screening for compounds with aromatase inhibiting activities from Atractylodes macrocephala Koidz. Molecules 16:3146–3151. https://doi.org/10.3390/molecules16043146

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Jiang ZH, Peng CY, Huang WP, Wu B, Zhang D, Ouyang H, Feng Y, Yang S (2019) A high throughput three-step ultra-performance liquid chromatography tandem mass spectrometry method to study metabolites of Atractylenolide-III. J Chromatogr Sci 57:163–176. https://doi.org/10.1093/chromsci/bmy098

    CAS  Article  PubMed  Google Scholar 

  33. Kang TH, Han NR, Kim HM, Jeong HJ (2011) Blockade of IL-6 secretion pathway by the sesquiterpenoid Atractylenolide III. J Nat Prod 74:223–227. https://doi.org/10.1021/np100686a

    CAS  Article  PubMed  Google Scholar 

  34. Kang TH, Bang JY, Kim MH, Kang IC, Kim HM, Jeong HJ (2011a) Atractylenolide III, a sesquiterpenoid, induces apoptosis in human lung carcinoma A549 cells via mitochondria-mediated death pathway. Food Chem Toxicol 49:514–519. https://doi.org/10.1016/j.fct.2010.11.038

    CAS  Article  PubMed  Google Scholar 

  35. Kim JH, Lee Y, Lee G, Doh EJ, Hong S (2018) Quantitative interrelation between Atractylenolide I, II, and III in Atractylodes japonica koidzumi rhizomes, and evaluation of their oxidative transformation using a biomimetic kinetic model. ACS Omega 3:14833–14840. https://doi.org/10.1021/acsomega.8b02005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Li CQ, He LC (2006) Establishment of the model of white blood cell membrane chromatography and screening of antagonizing TLR4 receptor component from Atractylodes macrocephala Koidz. Sci China Ser C 49:182–189. https://doi.org/10.1007/s11427-006-0182-7

    CAS  Article  Google Scholar 

  37. Li Y, Yang XW (2013) Five new eudesmane-type sesquiterpenoid lactones biotransformed from atractylenolide I by rat hepatic microsomes. Fitoterapia 85:95–100. https://doi.org/10.1016/j.fitote.2012.12.033

    CAS  Article  PubMed  Google Scholar 

  38. Li CQ, He LC, Deng T (2006) Pharmacokinetics and tissue distribution of atractylenolide III in rats. J Chin Med Mater 29:807–809. https://doi.org/10.13863/j.issn1001-4454.2006.08.024

    Article  Google Scholar 

  39. Li CQ, He LC, Dong HY, Jin JQ (2007a) Screening for the anti-inflammatory activity of fractions and compounds from Atractylodes macrocephala Koidz. J Ethnopharmacol 114:212–217. https://doi.org/10.1016/j.jep.2007.08.002

    CAS  Article  PubMed  Google Scholar 

  40. Li CQ, He LC, Jin JQ (2007b) Atractylenolide I and Atractylenolide III inhibit lipopolysaccharide-induced TNF-alpha and NO production in macrophages. Phytother Res 21:347–353. https://doi.org/10.1002/ptr.2040

    CAS  Article  PubMed  Google Scholar 

  41. Li D, Du SJ, Yu YQ (2012) Effects of Atractylodes lactone I on related inflammatory factors in rats with chronic atrophic gastritis. Med and pharm J Chin PLA 3:10–14. https://doi.org/10.3969/j.issn.2095-140X.2016.08.003

    CAS  Article  Google Scholar 

  42. Li Y, Zhang Y, Wang Z, Zhu J, Tian Y, Chen B (2012) Quantitative analysis of atractylenolide I in rat plasma by LC-MS/MS method and its application to pharmacokinetic study. J Pharmaceut Biomed 58:172–176. https://doi.org/10.1016/j.jpba.2011.09.023

    CAS  Article  Google Scholar 

  43. Li XC, Wei G, Wang XZ, Liu DH, Deng RD, Li H, Zhou JH, Li Y-W, Zeng HP, Chen DF (2012b) Targeting of the sonic hedgehog pathway by Atractylenolides promotes chondrogenic differentiation of mesenchymal stem cells. Biol Pharm Bull 35:1328–1335. https://doi.org/10.1248/bpb.b12-00265

    CAS  Article  PubMed  Google Scholar 

  44. Li Y, Liu J, Yang XW (2013) Four new eudesmane-type sesquiterpenoid lactones from atractylenolide II by biotransformation of rat hepatic microsomes. J Asian Nat Prod Res 15:344–356. https://doi.org/10.1080/10286020.2013.764867

    CAS  Article  PubMed  Google Scholar 

  45. Li M, Mao R, Shen K, Zheng YH, Li YQ (2014) Atractylenolide I-mediated Notch pathway inhibition attenuates gastric cancer stem cell traits. Biochem Bioph Res Co 450:353–359. https://doi.org/10.1016/j.bbrc.2014.05.110

    CAS  Article  Google Scholar 

  46. Li D, Yu YQ, Gao H, Liu DQ (2016) Protective effect of atractylenolide I on gastric mucosa in rats with chronic atrophic gastritis. Hebei J Tradit Chin Med. https://doi.org/10.16370/j.cnki.13-1214/r.2016.03.002

    Article  PubMed  Google Scholar 

  47. Li XF, Zhang D, Song DQ, Song SS, Liu MH (2018) Effects of atractylenolide I on tumor growth and apoptosis of human gastric cancer cell line SGC-7901 xenografts in nude mice. Chin J Hosp Pharm 12:231–242. https://doi.org/10.13286/j.cnki.chinhosppharmacyj.2018.18.09

    Article  Google Scholar 

  48. Li Y, Wang Y, Liu Z, Guo X, Miao Z, Ma S (2020) Atractylenolide I induces apoptosis and suppresses glycolysis by blocking the JAK2/STAT3 signaling pathway in colorectal cancer cells. Front Pharmacol. https://doi.org/10.3389/fphar.2020.00273

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lim H, Lee JH, Kim J, Kim YS, Kim HP (2012) Effects of the rhizomes of Atractylodes japonica and atractylenolide I on allergic response and experimental atopic dermatitis. Arch Pharm Res 35:2007–2012. https://doi.org/10.1007/s12272-012-1118-3

    CAS  Article  PubMed  Google Scholar 

  50. Lin ZH, Zhu DN, Yan YQ, Yu BY (2009) Neuroprotection by herbal formula FBD and its active compounds. Pharm Biol 47:608–614. https://doi.org/10.1080/13880200902913403

    CAS  Article  Google Scholar 

  51. Liu Y, Jia Z, Dong L, Wang R, Qiu G (2008) A randomized pilot study of atractylenolide I on gastric cancer cachexia patients. Evid Based Compl Alt Med 5:337–344. https://doi.org/10.1093/ecam/nem031

    Article  Google Scholar 

  52. Liu HY, Zhu YJ, Tao Z, Zhao ZG, Yu Z, Peng C, Hua L, Hui G, Su XM (2013) Anti-tumor effects of Atractylenolide I isolated from atractylodes macrocephala in human lung carcinoma cell lines. Molecules 18:13357–13368. https://doi.org/10.3390/molecules181113357

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Liu C, Zhao H, Ji ZH, Yu XY (2014) Neuroprotection of Atractylenolide III from atractylodis macrocephalae against glutamate-induced neuronal apoptosis via inhibiting caspase signaling pathway. Neurochem Res 39:1753–1758. https://doi.org/10.1007/s11064-014-1370-7

    CAS  Article  PubMed  Google Scholar 

  54. Liu H, Zhang G, Huang J, Ma S, Mi K, Cheng J, Zhu Y, Zha X, Huang W (2016) Atractylenolide I modulates ovarian cancer cell-mediated immunosuppression by blocking MD-2/TLR4 complex-mediated MyD88/NF-κB signaling in vitro. J Transl Med 14:104. https://doi.org/10.1186/s12967-016-0845-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Liu ZQ, Chu YJ, Liu J, Wang YB (2019) Atractylenolide I regulates proliferation and invasion of lung cancer A549 cells through the TLR4/MyD88 pathway. J Pract Oncol 033:228–232. https://doi.org/10.11904/j.issn.1002-3070.2019.03.007

    Article  Google Scholar 

  56. Liu K, Huan WP, Xu GZ, Chen DF, Liu JH, Zhang FX (2019) Inhibitory effect of atractylenolide III on adipogenic differentiation of rat bone marrow mesenchymal stem cells. New Chin Med Clin Pharm 29:41–46. https://doi.org/10.19378/j.issn.1003-9783.2018.03.006

    Article  Google Scholar 

  57. Long FY, Jia P, Wang HF, Yi Q, Meng-Jie HE, Wang XL (2017) Mechanisms and proliferation inhibitory effects of atractylenolide I on SK-OV-3 and OVCAR-3 ovarian cancer cell. J Reg Anat Operative Surg 26:89–93. https://doi.org/10.11659/jjssx.10E016046

    Article  Google Scholar 

  58. Long F, Lin H, Zhang X, Zhang J, Xiao H, Wang T (2020) Atractylenolide-I suppresses tumorigenesis of breast cancer by inhibiting toll-like receptor 4-mediated nuclear factor-kappaB signaling pathway. Front Pharmacol. https://doi.org/10.3389/fphar.2020.598939

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lu JD, Fu L, Qin GZ, Shi PL, Fu WJ (2018) The regulatory effect of Xiaoyao San on glucocorticoid receptors under the condition of chronic stress. Cell Mol Biol 64:103–109. https://doi.org/10.14715/cmb/2018.64.6.17

    Article  PubMed  Google Scholar 

  60. Luo L, and Sun Y (2012) Effect of Atractylodes Lactone III on Nerve Cell Damage. Shizhen Guoyi Med 23:560–562

  61. More S, Choi DK (2017a) Neuroprotective Role of Atractylenolide-I in an In Vitro and In Vivo Model of Parkinson’s Disease. Nutrients 9:451–459. https://doi.org/10.3390/nu9050451

    CAS  Article  PubMed Central  Google Scholar 

  62. More SV, Choi DK (2017b) Atractylenolide-I protects human SH-SY5Y cells from 1-Methyl-4-Phenylpyridinium-induced apoptotic cell death. Int J Mol Sci 18:1012–1018. https://doi.org/10.3390/ijms18051012

    CAS  Article  PubMed Central  Google Scholar 

  63. Murayama C, Wang CC, Michihara S, Norimoto H (2014) Pharmacological effects of “Jutsu” (Atractylodis rhizome and Atractylodis lanceae rhizome) on 1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane (DOI)-induced head twitch response in mice (I). Molecules 19:14979–14986. https://doi.org/10.3390/molecules190914979

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Nur EA, Ohshiro T, Kobayashi K, Wu J, Wahyudin E, Zhang H, Hayashi F, Kawagishi H, Tomoda H (2020) Inhibition of cholesteryl ester synthesis by polyacetylenes from Atractylodes rhizome. Bioorg Med Chem Lett 30:126997. https://doi.org/10.1016/j.bmcl.2020.126997

    CAS  Article  PubMed  Google Scholar 

  65. Park HY, Lim H, Kim HP, Kwon YS (2011) Downregulation of matrix metalloproteinase-13 by the root extract of Cyathula officinalis Kuan and its constituents in IL-1β-treated chondrocytes. Planta Med 77:1528–1530. https://doi.org/10.1055/s-0030-1270834

    CAS  Article  PubMed  Google Scholar 

  66. Qin JL, Zhang GX, Zhang XY, Tan BH, Lv ZS, Liu MY, Ren H, Qian M, Du B (2016) TLR-activated gap junction channels protect mice against bacterial infection through extracellular UDP release. J Immunol 196:1790–1798. https://doi.org/10.4049/jimmunol.1501629

    CAS  Article  PubMed  Google Scholar 

  67. Ren Q, Fang G, Wang B, Zhou XW, Li XT (2019) Atractylenolide II-ameliorated hyperlipidemia in mice by regulating AMPK/PPAR alpha/SREBP-1C signaling pathway. Mater Express 9:517–523. https://doi.org/10.1166/mex.2019.1517

    CAS  Article  Google Scholar 

  68. Shi YY, Guan SH, Tang RN, Tao SJ, Guo DA (2012) Simultaneous determination of Atractylenolide II and Atractylenolide III by liquid chromatography-tandem mass spectrometry in rat plasma and its application in a pharmacokinetic study after oral administration of Atractylodes Macrocephala rhizoma extract. Biomed Chromatogr 26:1386–1392. https://doi.org/10.1002/bmc.2709

    CAS  Article  PubMed  Google Scholar 

  69. Shuang T, Yu HD (2017) Atractylenolide II inhibits proliferation, motility and induces apoptosis in human gastric carcinoma cell lines HGC-27 and AGS. Molecules 22:1886–1895. https://doi.org/10.3390/molecules22111886

    CAS  Article  Google Scholar 

  70. Singhuber J, Baburin I, Kaehlig H, Urban E, Kopp B, Hering S (2012) GABA(A) receptor modulators from Chinese herbal medicines traditionally applied against insomnia and anxiety. Phytomedicine 19:334–340. https://doi.org/10.1016/j.phymed.2011.10.009

    CAS  Article  PubMed  Google Scholar 

  71. Song HP, Hou XQ, Li RY, Yu R, Li X, Zhou SN, Huang HY, Cai X, Zhou C (2017) Atractylenolide I stimulates intestinal epithelial repair through polyamine-mediated Ca2+ signaling pathway. Phytomedicine 28:27–35. https://doi.org/10.1016/j.phymed.2017.03.001

    CAS  Article  PubMed  Google Scholar 

  72. Tang XM, Liao ZK, Huang YW, Lin X, Wu LC (2017) Atractylenolide I protects against lipopolysaccharide - induced disseminated intravascular coagulation by anti-inflammatory and anticoagulation effect. Asian Pac J Trop Med 10:651–657. https://doi.org/10.1016/j.apjtm.2017.06.007

    CAS  Article  Google Scholar 

  73. Tsai CJ, Liang JW, Lin HR (2012) Sesquiterpenoids from Atractylodes macrocephala act as farnesoid X receptor and progesterone receptor modulators. Bioorg Med Chem Lett 22:2326–2329. https://doi.org/10.1016/j.bmcl.2012.01.048

    CAS  Article  PubMed  Google Scholar 

  74. Wang CC, Chen LG, Yang LL (2002) Cytotoxic activity of sesquiterpenoids from Atractylodes ovata on leukemia cell lines. Planta Med 68:204–208. https://doi.org/10.1055/s-2002-23144

    CAS  Article  PubMed  Google Scholar 

  75. Wang CC, Lin SY, Cheng HC, Hou WC (2006) Pro-oxidant and cytotoxic activities of atractylenolide I in human promyeloleukemic HL-60 cells. Food ChemToxicol 44:1308–1315. https://doi.org/10.1016/j.fct.2006.02.008

    CAS  Article  Google Scholar 

  76. Wang CH, Wang SC, Chen QH, He LC (2008) A capillary gas chromatography-selected ion monitoring mass spectrometry method for the analysis of atractylenolide I in rat plasma and tissues, and application in a pharmacokinetic study. J Chromatogr B 863:215–222. https://doi.org/10.1016/j.jchromb.2008.01.004

    CAS  Article  Google Scholar 

  77. Wang CH, He LC, Wang N, Liu F (2009) Screening anti-inflammatory components from Chinese traditional medicines using a peritoneal macrophage/cell membrane chromatography-offline-GC/MS method. J Chromatogr B 877:3019–3024. https://doi.org/10.1016/j.jchromb.2009.07.022

    CAS  Article  Google Scholar 

  78. Wang C, Duan H, He L (2009a) Inhibitory effect of atractylenolide I on angiogenesis in chronic inflammation in vivo and in vitro. Eur J Pharmacol 612:143–152. https://doi.org/10.1016/j.ejphar.2009.04.001

    CAS  Article  PubMed  Google Scholar 

  79. Wang CH, Duan HJ, He LC (2009b) Absorption kinetics of atractylenolide I in intestines of rats. China J Chin Materia Med 34:1430–1434

    Google Scholar 

  80. Wang KT, Chen LG, Wu CH, Chang CC, Wang CC (2010) Gastroprotective activity of atractylenolide III from Atractylodes ovata on ethanol-induced gastric ulcer in vitro and in vivo. J Pharm Pharmacol 62:381–388. https://doi.org/10.1211/jpp.62.03.0014

    CAS  Article  PubMed  Google Scholar 

  81. Wang CH, Geng QG, Wang YX (2012) Protective effect of atractylenolide I on immune liver injury. Chin J Tradit Chin Med 37:1809–1813

    CAS  Google Scholar 

  82. Wang AM, Xiao ZM, Zhou LP, Zhang J, Li XM, He QC (2016) The protective effect of Atractylenolide I on systemic inflammation in the mouse model of sepsis created by cecal ligation and puncture. Pharm Biol 54:146–150. https://doi.org/10.3109/13880209.2015.1024330

    CAS  Article  PubMed  Google Scholar 

  83. Wang T, Long F, Zhang X, Yang Y, Jiang X, Wang L (2017) Chemopreventive effects of atractylenolide II on mammary tumorigenesis via activating Nrf2-ARE pathway. Oncotarget 8:77500–77514. https://doi.org/10.18632/oncotarget.20546

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wang J, Nasser M, Adlat S, Ming JM, Jiang N, Gao L (2018) Atractylenolide II induces apoptosis of prostate cancer cells through regulation of AR and JAK2/STAT3 signaling pathways. Molecules 23:187–196. https://doi.org/10.3390/molecules23123298

    CAS  Article  Google Scholar 

  85. Wang H, Gong YX, Li YR, Xu MM, Gu YF (2019a) Effect of atractylenolide III on interstitial cells of Cajal and C-kit/SCF pathway of rats with loperamide-induced slow transit constipation. Trop J Pharm Res 18:1197–1204. https://doi.org/10.4314/tjpr.v18i6.8

    CAS  Article  Google Scholar 

  86. Wang MQ, Hu R, Wang YJ, Liu LY, You HY, Zhang JX, Wu XH, Pei TT, Wang FJ, Lu L, Xiao W, Wei LB (2019b) Atractylenolide III attenuates muscle wasting in chronic kidney disease via the oxidative stress-mediated PI3K/AKT/mTOR pathway. Oxid Med Cell Longev 20:1–16. https://doi.org/10.1155/2019/1875471

    CAS  Article  Google Scholar 

  87. Xiao Q, Zheng F, Tang Q, Wu JJ, Xie J, Huang HD, Yang XB, Hann SS (2018) Repression of PDK1-and LncRNA HOTAIR-mediated EZH2 gene expression contributes to the enhancement of Atractylenolide 1 and Erlotinib in the Inhibition of human lung cancer cells. Cell Physiol Biochem 49:1615–1632. https://doi.org/10.1159/000493497

    CAS  Article  PubMed  Google Scholar 

  88. Yan Y, Chou GX, Hui W, Chu JH, Fong WF, Yu ZL (2011) Effects of sesquiterpenes isolated from largehead atractylodes rhizome on growth, migration, and differentiation of B16 melanoma cells. Integr Cancer Ther 10:92–100. https://doi.org/10.1177/1534735410378660

    CAS  Article  Google Scholar 

  89. Yang Y, Wang Y, Wang T, Jiang X, Wang L (2017) Screening active components of modified Xiaoyao powder as NRF2 agonists. Cell Biochem Funct 35:518–526. https://doi.org/10.1002/cbf.3309

    CAS  Article  PubMed  Google Scholar 

  90. Ye Y, Wang H, Chu JH, Chou GX, Chen SB, Mo H, Fong WF, Yu ZL (2011) Atractylenolide II induces G1 cell-cycle arrest and apoptosis in B16 melanoma cells. J Ethnopharmacol 136:279–282. https://doi.org/10.1016/j.jep.2011.04.020

    CAS  Article  PubMed  Google Scholar 

  91. Ye Y, Chao XJ, Wu JF, Cheng BC, Su T, Fu XQ, Li T, Guo H, Tse AK, Kwan HY (2015a) ERK/GSK3β signaling is involved in atractylenolide I-induced apoptosis and cell cycle arrest in melanoma cells. Oncol Rep 34:1543. https://doi.org/10.3892/or.2015.4111

    CAS  Article  PubMed  Google Scholar 

  92. Ye Y, Chao XJ, Wu JF, Cheng BCY, Su T, Fu XQ, Li T, Guo H, Tse AKW, Kwan HY, Du J, Chou GX, Yu ZL (2015b) ERK/GSK3 beta signaling is involved in Atractylenolide I-induced apoptosis and cell cycle arrest in melanoma cells. Oncol Rep 34:1543–1548. https://doi.org/10.3892/or.2015.4111

    CAS  Article  PubMed  Google Scholar 

  93. Yim NH, Gu MJ, Park HR, Hwang YH, Ma JY (2018) Enhancement of neuroprotective activity of Sagunja-tang by fermentation with lactobacillus strains. BMC Complement Altern Med 18:312. https://doi.org/10.1186/s12906-018-2361-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. Yoou M-S, Nam SY, Jin MH, Lee SY, Kim MS, Roh SS, Choi IH, Woo N, Lim S, Kim DH, Jang JB, Kim HM, Jeong HJ (2017) Ameliorative effect of atractylenolide III in the mast cell proliferation induced by TSLP. Food Chem Toxicol 106:78–85. https://doi.org/10.1016/j.fct.2017.05.042

    CAS  Article  PubMed  Google Scholar 

  95. Yu R, Yu BX, Chen JF, Lv XY, Yan ZJ, Cheng Y, Ma Q (2016) Anti-tumor effects of Atractylenolide I on bladder cancer cells. J Exp Clin Canc Res 35:40–46. https://doi.org/10.1186/s13046-016-0312-4

    CAS  Article  Google Scholar 

  96. Yu ML, Xing SS, Bai XH, Zhang XM, Wang CM, Wang AH, Kong XY, Bai MC (2016a) Mechanism analysis for Atractylenolide II-Zidovudine interaction. Lat Am J Pharm 35:395–398

    CAS  Google Scholar 

  97. Yu XY, Zhang YY, Ji ZH (2018) Effects of atractylenolide III on learning and memory ability and expression of Bcl-2 in hippocampus of dementia rats. Northeast Normal Univ News. https://doi.org/10.16163/j.cnki.22-1123/n.2018.03.020

    Article  Google Scholar 

  98. Yun BR, Weon JB, Lee J, Eom MR, Ma CJ (2014) Neuroprotective effect of the fermented Gumiganghwal-tang. J Biosci Bioeng 118:235–238. https://doi.org/10.1016/j.jbiosc.2014.01.004

    CAS  Article  PubMed  Google Scholar 

  99. Zhang JL, Huang WM, Zeng QY (2015) Atractylenolide I protects mice from lipopolysaccharide-induced acute lung injury. Eur J Pharmacol 765:94–99. https://doi.org/10.1016/j.ejphar.2015.08.022

    CAS  Article  PubMed  Google Scholar 

  100. Zhang Q, Cao YF, Ran RX, Li RS, Wu X, Dong PP, Zhang YY, Hu CM, Wang WM (2016) Strong specific inhibition of UDP-glucuronosyltransferase 2B7 by Atractylenolide I and III. Phytother Res 30:25–30. https://doi.org/10.1002/ptr.5496

    CAS  Article  PubMed  Google Scholar 

  101. Zhang CX, Zhang YJ, Jiang B, Long HY, Ruan J, Zhu WN (2017) Effect of Atractylenolide II in promoting apoptosis of lovo cells and Its impact on expression of PARP1 and Caspase-3. Chin J Exp Tradit Med Formul 5:157–161. https://doi.org/10.13422/j.cnki.syfjx.2017050157

    Article  Google Scholar 

  102. Zhang N, Liu C, Sun TM, Ran XK, Kang TG, Dou DQ (2017b) Two new compounds from Atractylodes macrocephala with neuroprotective activity. J Asian Nat Prod Res 19:35–41. https://doi.org/10.1080/10286020.2016.1247351

    CAS  Article  PubMed  Google Scholar 

  103. Zhang R, Wang Z, Yu Q, Shen J, He W, Zhou D, Yu Q, Fan J, Gao S, Duan L (2019) Atractylenolide II reverses the influence of lncRNA XIST/miR-30a-5p/ROR1 axis on chemo-resistance of colorectal cancer cells. J Cell Mol Med 23:3151–3165. https://doi.org/10.1111/jcmm.14148

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. Zhang LM, He YQ, Yu GR (2019) Effect of Atractylenolide I on H2O2-induced oxidative stress injury in bend. 3 cells. Chinese Medicine Herald 25:39–42. https://doi.org/10.13862/j.cnki.cn43-1446/r.2019.03.010

    Article  Google Scholar 

  105. Zhang WL, Li N, Shen Q, Fan M, Guo X, Zhang XW, Zhang Z, Liu X (2020) Establishment of a mouse model of cancer cachexia with spleen deficiency syndrome and the effects of atractylenolide I. Acta Pharmacol Sin 41:237–248. https://doi.org/10.1038/s41401-019-0275-z

    CAS  Article  PubMed  Google Scholar 

  106. Zhao H, Ji ZH, Liu C, Yu XY (2015) Neuroprotection and mechanisms of atractylenolide III in preventing learning and memory impairment induced by chronic high-dose homocysteine administration in rats. Neuroscience 290:485–491. https://doi.org/10.1016/j.neuroscience.2015.01.060

    CAS  Article  PubMed  Google Scholar 

  107. Zhou YZ, Ren YL, Ma ZJ, Jia GC, Gao XX, Zhang LZ, Qin XM (2012) Identification and quantification of the major volatile constituents in antidepressant active fraction of xiaoyaosan by gas chromatography-mass Spectrometry. J Ethnopharmacol 141:187–192. https://doi.org/10.1016/j.jep.2012.02.018

    CAS  Article  PubMed  Google Scholar 

  108. Zhou KC, Chen J, Wu JY, Wu QY, Jia CQ, Xu YXZ, Chen L, Tu WZ, Yang GH, Kong JM, Kou JP, Jiang SH (2019) Atractylenolide III ameliorates cerebral ischemic injury and neuroinflammation associated with inhibiting JAK2/STAT3/Drp1-dependent mitochondrial fission in microglia. Phytomedicine 59:152922. https://doi.org/10.1016/j.phymed.2019.152922

    CAS  Article  PubMed  Google Scholar 

  109. Zhou RX, Song LJ, Shi XY, Wang XT, Tan WP, Lu HQ, Zhao WC (2019b) Study on anti-rotavirus effect of Atractylodes Lactone I, II and III in vivo and in vitro. J Chin Herb Med 50:107–113. https://doi.org/10.7501/j.issn.0253-2670.2019.01.017

    Article  Google Scholar 

  110. Zhu B, Zhang QL, Hua JW, Cheng WL, Qin LP (2018) The traditional uses, phytochemistry, and pharmacology of Atractylodes macrocephala Koidz.: A review. J Ethnopharmacol 226:143–167. https://doi.org/10.1016/j.jep.2018.08.023

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Science and Technology of Sichuan Province (No. 2020095 and No. 2019YFS0113).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaofang Li.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deng, M., Chen, H., Long, J. et al. Atractylenolides (I, II, and III): a review of their pharmacology and pharmacokinetics. Arch. Pharm. Res. 44, 633–654 (2021). https://doi.org/10.1007/s12272-021-01342-6

Download citation

Keywords

  • Atractylenolides
  • Pharmacology
  • Pharmacokinetics
  • Safety