Skip to main content

Methamphetamine-induced dopaminergic neurotoxicity as a model of Parkinson’s disease

Abstract

Parkinson’s disease (PD) is a progressive neurodegenerative disease with a high prevalence, approximately 1 % in the elderly population. Numerous studies have demonstrated that methamphetamine (MA) intoxication caused the neurological deficits and nigrostriatal damage seen in Parkinsonian conditions, and subsequent rodent studies have found that neurotoxic binge administration of MA reproduced PD-like features, in terms of its symptomatology and pathology. Several anti-Parkinsonian medications have been shown to attenuate the motor impairments and dopaminergic damage induced by MA. In addition, it has been recognized that mitochondrial dysfunction, oxidative stress, pro-apoptosis, proteasomal/autophagic impairment, and neuroinflammation play important roles in inducing MA neurotoxicity. Importantly, MA neurotoxicity has been shown to share a common mechanism of dopaminergic toxicity with that of PD pathogenesis. This review describes the major findings on the neuropathological features and underlying neurotoxic mechanisms induced by MA and compares them with Parkinsonian pathogenesis. Taken together, it is suggested that neurotoxic binge-type administration of MA in rodents is a valid animal model for PD that may provide knowledge on the neuropathogenesis of PD.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Açikgöz O, Gönenç S, Kayatekin BM, Uysal N, Pekçetin C, Semin I, Güre A (1998) Methamphetamine causes lipid peroxidation and an increase in superoxide dismutase activity in the rat striatum. Brain Res 813:200–202. https://doi.org/10.1016/s0006-8993(98)01020-8

    Article  PubMed  Google Scholar 

  2. Adam-Vizi V (2005) Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal 7(9–10):1140–1149. https://doi.org/10.1089/ars.2005.7.1140

    CAS  Article  PubMed  Google Scholar 

  3. Alvarez-Castelao B, Goethals M, Vandekerckhove J, Castaño JG (2014) Mechanism of cleavage of alpha-synuclein by the 20S proteasome and modulation of its degradation by the RedOx state of the N-terminal methionines. Biochim Biophys Acta 1843(2):352–365. https://doi.org/10.1016/j.bbamcr.2013.11.018

    CAS  Article  PubMed  Google Scholar 

  4. Alvarez-Erviti L, Rodriguez-Oroz MC, Cooper JM, Caballero C, Ferrer I, Obeso JA, Schapira AH (2010) Chaperone-mediated autophagy markers in Parkinson disease brains. Arch Neurol 67(12):1464–1472. https://doi.org/10.1001/archneurol.2010.198

    Article  PubMed  Google Scholar 

  5. Ambani LM, Van Woert MH, Murphy S (1975) Brain peroxidase and catalase in Parkinson disease. Arch Neurol 32(2):114–118. https://doi.org/10.1001/archneur.1975.00490440064010

    CAS  Article  PubMed  Google Scholar 

  6. Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC, Agid Y (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12(1):25–31. https://doi.org/10.14670/HH-12.25

    CAS  Article  PubMed  Google Scholar 

  7. Ares-Santos S, Granado N, Oliva I, O’Shea E, Martin ED, Colado MI, Moratalla R (2012) Dopamine D(1) receptor deletion strongly reduces neurotoxic effects of methamphetamine. Neurobiol Dis 45:810–820. https://doi.org/10.1016/j.nbd.2011.11.005

    CAS  Article  PubMed  Google Scholar 

  8. Ares-Santos S, Granado N, Espadas I, Martinez-Murillo R, Moratalla R (2014) Methamphetamine causes degeneration of dopamine cell bodies and terminals of the nigrostriatal pathway evidenced by silver staining. Neuropsychopharmacology 39:1066–1080. https://doi.org/10.1038/npp.2013.307

    CAS  Article  PubMed  Google Scholar 

  9. Asanuma M, Miyazaki I, Higashi Y, Cadet JL, Ogawa N (2002) Methamphetamine-induced increase in striatal p53 DNA-binding activity is attenuated in Cu,Zn-superoxide dismutase transgenic mice. Neurosci Lett 325:191–194. https://doi.org/10.1016/s0304-3940(02)00291-4

    CAS  Article  PubMed  Google Scholar 

  10. Asanuma M, Tsuji T, Miyazaki I, Miyoshi K, Ogawa N (2003) Methamphetamine-induced neurotoxicity in mouse brain is attenuated by ketoprofen, a non-steroidal anti-inflammatory drug. Neurosci Lett 352:13–16. https://doi.org/10.1016/j.neulet.2003.08.015

    CAS  Article  PubMed  Google Scholar 

  11. Ascherio A, Schwarzschild MA (2016) The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol 15(12):1257–1272. https://doi.org/10.1016/S1474-4422(16)30230-7

    Article  PubMed  Google Scholar 

  12. Bachmann RF, Wang Y, Yuan P, Zhou R, Li X, Alesci S, Du J, Manji HK (2009) Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage. Int J Neuropsychopharmacol 12(6):805–822. https://doi.org/10.1017/S1461145708009802

    CAS  Article  PubMed  Google Scholar 

  13. Beauvais G, Atwell K, Jayanthi S, Ladenheim B, Cadet JL (2011) Involvement of dopamine receptors in binge methamphetamine-induced activation of endoplasmic reticulum and mitochondrial stress pathways. PLoS One 6:e28946. https://doi.org/10.1371/journal.pone.0028946

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Belcher AM, Feinstein EM, O’Dell SJ, Marshall JF (2008) Methamphetamine influences on recognition memory: comparison of escalating and single-day dosing regimens. Neuropsychopharmacology 33:1453–1463. https://doi.org/10.1038/sj.npp.1301510

    CAS  Article  PubMed  Google Scholar 

  15. Böckelmann R, Wolf G, Ransmayr G, Riederer P (1994) NADPH-diaphorase/nitric oxide synthase containing neurons in normal and Parkinson’s disease putamen. J Neural Transm Park Dis Dement Sec. 7(2):115–121. https://doi.org/10.1007/BF02260966

    Article  PubMed  Google Scholar 

  16. Boger HA, Middaugh LD, Granholm AC, McGinty JF (2009) Minocycline restores striatal tyrosine hydroxylase in GDNF heterozygous mice but not in methamphetamine-treated mice. Neurobiol Dis 33:459–466. https://doi.org/10.1016/j.nbd.2008.11.013

    CAS  Article  PubMed  Google Scholar 

  17. Brandão PRP, Munhoz RP, Grippe TC, Cardoso FEC, de Almeida E, Castro BM, Titze-de-Almeida R, Tomaz C, Tavares MCH (2020) Cognitive impairment in Parkinson’s disease: A clinical and pathophysiological overview. J Neurol Sci 419:117177. https://doi.org/10.1016/j.jns.2020.117177

    Article  PubMed  Google Scholar 

  18. Brochard V, Combadière B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, Bonduelle O, Alvarez-Fischer D, Callebert J, Launay JM, Duyckaerts C, Flavell RA, Hirsch EC, Hunot S (2009) Infiltration of CD4 + lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest 119(1):182–192. https://doi.org/10.1172/JCI36470

    CAS  Article  PubMed  Google Scholar 

  19. Brown JM, Quinton MS, Yamamoto BK (2005) Methamphetamine-induced inhibition of mitochondrial complex II: roles of glutamate and peroxynitrite. J Neurochem 95(2):429–436. https://doi.org/10.1111/j.1471-4159.2005.03379.x

    CAS  Article  PubMed  Google Scholar 

  20. Brown JM, Gouty S, Iyer V, Rosenberger J, Cox BM (2006) Differential protection against MPTP or methamphetamine toxicity in dopamine neurons by deletion of ppN/OFQ expression. J Neurochem 98:495–505. https://doi.org/10.1111/j.1471-4159.2006.03902.x

    CAS  Article  PubMed  Google Scholar 

  21. Buhlman L, Damiano M, Bertolin G, Ferrando-Miguel R, Lombès A, Brice A, Corti O (2014) Functional interplay between Parkin and Drp1 in mitochondrial fission and clearance. Biochim Biophys Acta 1843(9):2012–2026. https://doi.org/10.1016/j.bbamcr.2014.05.012

    CAS  Article  PubMed  Google Scholar 

  22. Bukhatwa S, Zeng BY, Rose S, Jenner P (2010) A comparison of changes in proteasomal subunit expression in the substantia nigra in Parkinson’s disease, multiple system atrophy and progressive supranuclear palsy. Brain Res 1326:174–183. https://doi.org/10.1016/j.brainres.2010.02.045

    CAS  Article  PubMed  Google Scholar 

  23. Burrows KB, Gudelsky G, Yamamoto BK (2000) Rapid and transient inhibition of mitochondrial function following methamphetamine or 3,4-methylenedioxymethamphetamine administration. Eur J Pharmacol 398(1):11–18. https://doi.org/10.1016/s0014-2999(00)00264-8

    CAS  Article  PubMed  Google Scholar 

  24. Cadet JL, Sheng P, Ali S, Rothman R, Carlson E, Epstein C (1994) Attenuation of methamphetamine-induced neurotoxicity in copper/zinc superoxide dismutase transgenic mice. J Neurochem 62:380–383. https://doi.org/10.1046/j.1471-4159.1994.62010380.x

    CAS  Article  PubMed  Google Scholar 

  25. Callaghan RC, Cunningham JK, Sajeev G, Kish SJ (2010) Incidence of Parkinson’s disease among hospital patients with methamphetamine-use disorders. Mov Disord 25:2333–2339. https://doi.org/10.1002/mds.23263

    Article  PubMed  Google Scholar 

  26. Callaghan RC, Cunningham JK, Sykes J, Kish SJ (2012) Increased risk of Parkinson’s disease in individuals hospitalized with conditions related to the use of methamphetamine or other amphetamine-type drugs. Drug Alcohol Depend 120:35–40. https://doi.org/10.1016/j.drugalcdep.2011.06.013

    CAS  Article  PubMed  Google Scholar 

  27. Cass WA (1997) Decreases in evoked overflow of dopamine in rat striatum after neurotoxic doses of methamphetamine. J Pharmacol Exp Ther 280:105–113

    CAS  PubMed  Google Scholar 

  28. Cass WA, Harned ME, Peters LE, Nath A, Maragos WF (2003) HIV-1 protein Tat potentiation of methamphetamine-induced decreases in evoked overflow of dopamine in the striatum of the rat. Brain Res 984:133–142. https://doi.org/10.1016/s0006-8993(03)03122-6

    CAS  Article  PubMed  Google Scholar 

  29. Castaño A, Herrera AJ, Cano J, Machado A (1998) Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem 70(4):1584–1592. https://doi.org/10.1046/j.1471-4159.1998.70041584.x

    Article  PubMed  Google Scholar 

  30. Castellani RJ, Siedlak SL, Perry G, Smith MA (2000) Sequestration of iron by Lewy bodies in Parkinson’s disease. Acta Neuropathol 100(2):111–114. https://doi.org/10.1007/s004010050001

    CAS  Article  PubMed  Google Scholar 

  31. Castino R, Lazzeri G, Lenzi P, Bellio N, Follo C, Ferrucci M, Fornai F, Isidoro C (2008) Suppression of autophagy precipitates neuronal cell death following low doses of methamphetamine. J Neurochem 106:1426–1439. https://doi.org/10.1111/j.1471-4159.2008.05488.x

    CAS  Article  PubMed  Google Scholar 

  32. Chan P, Di Monte DA, Luo JJ, DeLanney LE, Irwin I, Langston JW (1994) Rapid ATP loss caused by methamphetamine in the mouse striatum: relationship between energy impairment and dopaminergic neurotoxicity. J Neurochem 62(6):2484–2487. https://doi.org/10.1046/j.1471-4159.1994.62062484.x

    CAS  Article  PubMed  Google Scholar 

  33. Chan DC (2012) Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 46:265–287. https://doi.org/10.1146/annurev-genet-110410-132529

    CAS  Article  PubMed  Google Scholar 

  34. Chao J, Zhang Y, Du L, Zhou R, Wu X, Shen K, Yao H (2017) Molecular mechanisms underlying the involvement of the sigma-1 receptor in methamphetamine-mediated microglial polarization. Sci Rep 7(1):11540. https://doi.org/10.1038/s41598-017-11065-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Chen H, Chan DC (2009) Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Hum Mol Genet 18(R2):R169–R176. https://doi.org/10.1093/hmg/ddp326

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Chen YH, Bae E, Chen H, Yu SJ, Harvey BK, Greig NH, Wang Y (2019) Pifithrin-Alpha Reduces Methamphetamine Neurotoxicity in Cultured Dopaminergic Neurons. Neurotox Res 36(2):347–356. https://doi.org/10.1007/s12640-019-00050-w

    CAS  Article  PubMed  Google Scholar 

  37. Chin MH, Qian WJ, Wang H, Petyuk VA, Bloom JS, Sforza DM, Laćan G, Liu D, Khan AH, Cantor RM, Bigelow DJ, Melega WP, Camp DG, Smith RD, Smith DJ (2008) Mitochondrial dysfunction, oxidative stress, and apoptosis revealed by proteomic and transcriptomic analyses of the striata in two mouse models of Parkinson’s disease. J Proteome Res 7(2):666–677. https://doi.org/10.1021/pr070546l

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Choi DY, Liu M, Hunter RL, Cass WA, Pandya JD, Sullivan PG, Shin EJ, Kim HC, Gash DM, Bing G (2009) Striatal neuroinflammation promotes Parkinsonism in rats. PLoS One 4(5):e5482. https://doi.org/10.1371/journal.pone.0005482

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Chou J, Luo Y, Kuo CC, Powers K, Shen H, Harvey BK, Hoffer BJ, Wang Y (2008) Bone morphogenetic protein-7 reduces toxicity induced by high doses of methamphetamine in rodents. Neuroscience 151(1):92–103. https://doi.org/10.1016/j.neuroscience.2007.10.044

    CAS  Article  PubMed  Google Scholar 

  40. Chu Y, Dodiya H, Aebischer P, Olanow CW, Kordower JH (2009) Alterations in lysosomal and proteasomal markers in Parkinson’s disease: relationship to alpha-synuclein inclusions. Neurobiol Dis 35(3):385–398. https://doi.org/10.1016/j.nbd.2009.05.023

    CAS  Article  PubMed  Google Scholar 

  41. Chung KK, Thomas B, Li X, Pletnikova O, Troncoso JC, Marsh L, Dawson VL, Dawson TM (2004) S-nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function. Science 304(5675):1328–1331. https://doi.org/10.1126/science.1093891

    CAS  Article  PubMed  Google Scholar 

  42. Coelho-Santos V, Gonçalves J, Fontes-Ribeiro C, Silva AP (2012) Prevention of methamphetamine-induced microglial cell death by TNF-α and IL-6 through activation of the JAK-STAT pathway. J Neuroinflammation 9:103. https://doi.org/10.1186/1742-2094-9-103

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Curtin K, Fleckenstein AE, Robison RJ, Crookston MJ, Smith KR, Hanson GR (2015) Methamphetamine/amphetamine abuse and risk of Parkinson’s disease in Utah: a population-based assessment. Drug Alcohol Depend 146:30–38. https://doi.org/10.1016/j.drugalcdep.2014.10.027

    CAS  Article  PubMed  Google Scholar 

  44. da Silva DD, Silva E, Carmo H (2014) Combination effects of amphetamines under hyperthermia - the role played by oxidative stress. J Appl Toxicol 34(6):637–650. https://doi.org/10.1002/jat.2889

    CAS  Article  PubMed  Google Scholar 

  45. Dang DK, Shin EJ, Nam Y, Ryoo S, Jeong JH, Jang CG, Nabeshima T, Hong JS, Kim HC (2016) Apocynin prevents mitochondrial burdens, microglial activation, and pro-apoptosis induced by a toxic dose of methamphetamine in the striatum of mice via inhibition of p47phox activation by ERK. J Neuroinflammation 13:12. https://doi.org/10.1186/s12974-016-0478-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Dang DK, Shin EJ, Mai AT, Jang CG, Nah SY, Jeong JH, Ledent C, Yamamoto T, Nabeshima T, Onaivi ES, Kim HC (2017a) Genetic or pharmacological depletion of cannabinoid CB1 receptor protects against dopaminergic neurotoxicity induced by methamphetamine in mice. Free Radic Biol Med 108:204–224. https://doi.org/10.1016/j.freeradbiomed.2017.03.033

    CAS  Article  PubMed  Google Scholar 

  47. Dang DK, Shin EJ, Tran HQ, Kim DJ, Jeong JH, Jang CG, Nah SY, Sato H, Nabeshima T, Yoneda Y, Kim HC (2017b) The role of system Xc- in methamphetamine-induced dopaminergic neurotoxicity in mice. Neurochem Int 108:254–265. https://doi.org/10.1016/j.neuint.2017.04.013

    CAS  Article  PubMed  Google Scholar 

  48. Dang DK, Shin EJ, Kim DJ, Tran HQ, Jeong JH, Jang CG, Nah SY, Jeong JH, Byun JK, Ko SK, Bing G, Hong JS, Kim HC (2018a) Ginsenoside Re protects methamphetamine-induced dopaminergic neurotoxicity in mice via upregulation of dynorphin-mediated κ-opioid receptor and downregulation of substance P-mediated neurokinin 1 receptor. J Neuroinflammation 15(1):52. https://doi.org/10.1186/s12974-018-1087-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Dang DK, Shin EJ, Kim DJ, Tran HQ, Jeong JH, Jang CG, Ottersen OP, Nah SY, Hong JS, Nabeshima T, Kim HC (2018b) PKCδ-dependent p47phox activation mediates methamphetamine-induced dopaminergic neurotoxicity. Free Radic Biol Med 115:318–337. https://doi.org/10.1016/j.freeradbiomed.2017.12.018

    CAS  Article  PubMed  Google Scholar 

  50. de Haan JB, Cristiano F, Iannello RC, Kola I (1995) Cu/Zn-superoxide dismutase and glutathione peroxidase during aging. Biochem Mol Biol Int 35(6):1281–1297

    PubMed  Google Scholar 

  51. Dehay B, Bové J, Rodríguez-Muela N, Perier C, Recasens A, Boya P, Vila M (2010) Pathogenic lysosomal depletion in Parkinson’s disease. J Neurosci 30(37):12535–12544. https://doi.org/10.1523/JNEUROSCI.1920-10.2010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Deas E, Cremades N, Angelova PR, Ludtmann MH, Yao Z, Chen S, Horrocks MH, Banushi B, Little D, Devine MJ, Gissen P, Klenerman D, Dobson CM, Wood NW, Gandhi S, Abramov AY (2016) Alpha-Synuclein Oligomers Interact with Metal Ions to Induce Oxidative Stress and Neuronal Death in Parkinson’s Disease. Antioxid Redox Signal 24(7):376–391. https://doi.org/10.1089/ars.2015.6343

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Deng X, Cadet JL (2000) Methamphetamine-induced apoptosis is attenuated in the striata of copper-zinc superoxide dismutase transgenic mice. Brain Res Mol Brain Res 83:121–124. https://doi.org/10.1016/s0169-328x(00)00169-8

    CAS  Article  PubMed  Google Scholar 

  54. Deng X, Wang Y, Chou J, Cadet JL (2001) Methamphetamine causes widespread apoptosis in the mouse brain: evidence from using an improved TUNEL histochemical method. Brain Res Mol Brain Res 93:64–69. https://doi.org/10.1016/s0169-328x(01)00184-x

    CAS  Article  PubMed  Google Scholar 

  55. Deng X, Cai NS, McCoy MT, Chen W, Trush MA, Cadet JL (2002) Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology 42(6):837–845. https://doi.org/10.1016/s0028-3908(02)00034-5

    CAS  Article  PubMed  Google Scholar 

  56. Di Monte DA, Royland JE, Jakowec MW, Langston JW (1996) Role of nitric oxide in methamphetamine neurotoxicity: protection by 7-nitroindazole, an inhibitor of neuronal nitric oxide synthase. J Neurochem 67:2443–2450. https://doi.org/10.1046/j.1471-4159.1996.67062443.x

    Article  PubMed  Google Scholar 

  57. Doorn KJ, Moors T, Drukarch B, van de Berg WDj, Lucassen PJ, van Dam AM (2014) Microglial phenotypes and toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson’s disease patients. Acta Neuropathol Commun 2:90. https://doi.org/10.1186/s40478-014-0090-1

    Article  PubMed  PubMed Central  Google Scholar 

  58. Draoui A, El Hiba O, Aimrane A, El Khiat A, Gamrani H (2020) Parkinson’s disease: From bench to bedside. Rev Neurol (Paris) 176(7–8):543–559. https://doi.org/10.1016/j.neurol.2019.11.002

    CAS  Article  Google Scholar 

  59. Duty S, Jenner P (2011) Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol 164(4):1357–1391. https://doi.org/10.1111/j.1476-5381.2011.01426.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Eberhardt O, Schulz JB (2003) Apoptotic mechanisms and antiapoptotic therapy in the MPTP model of Parkinson’s disease. Toxicol Lett 139(2–3):135–151. https://doi.org/10.1016/s0378-4274(02)00428-9

    CAS  Article  PubMed  Google Scholar 

  61. Eisch AJ, Gaffney M, Weihmuller FB, O’Dell SJ, Marshall JF (1992) Striatal subregions are differentially vulnerable to the neurotoxic effects of methamphetamine. Brain Res 598:321–326. https://doi.org/10.1016/0006-8993(92)90201-j

    CAS  Article  PubMed  Google Scholar 

  62. Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, Stefanis L, Vekrellis K (2010) Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci 30(20):6838–6851. https://doi.org/10.1523/JNEUROSCI.5699-09.2010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Endo H, Kamada H, Nito C, Nishi T, Chan PH (2006) Mitochondrial translocation of p53 mediates release of cytochrome c and hippocampal CA1 neuronal death after transient global cerebral ischemia in rats. J Neurosci 26:7974–7983. https://doi.org/10.1523/JNEUROSCI.0897-06.2006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Fantegrossi WE, Ciullo JR, Wakabayashi KT, De La Garza R, Traynor JR, Woods JH (2008) A comparison of the physiological, behavioral, neurochemical and microglial effects of methamphetamine and 3,4-methylenedioxymethamphetamine in the mouse. Neuroscience 151:533–543. https://doi.org/10.1016/j.neuroscience.2007.11.007

    CAS  Article  PubMed  Google Scholar 

  65. Feng ST, Wang ZZ, Yuan YH, Wang XL, Sun HM, Chen NH, Zhang Y (2020) Dynamin-related protein 1: A protein critical for mitochondrial fission, mitophagy, and neuronal death in Parkinson’s disease. Pharmacol Res 151:104553. https://doi.org/10.1016/j.phrs.2019.104553

    CAS  Article  PubMed  Google Scholar 

  66. Fiesel FC, Ando M, Hudec R, Hill AR, Castanedes-Casey M, Caulfield TR, Moussaud-Lamodière EL, Stankowski JN, Bauer PO, Lorenzo-Betancor O, Ferrer I, Arbelo JM, Siuda J, Chen L, Dawson VL, Dawson TM, Wszolek ZK, Ross OA, Dickson DW, Springer W (2015) Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation. EMBO Rep 16(9):1114–1130. https://doi.org/10.15252/embr.201540514

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Flora G, Lee YW, Nath A, Maragos W, Hennig B, Toborek M (2002) Methamphetamine-induced TNF-alpha gene expression and activation of AP-1 in discrete regions of mouse brain: potential role of reactive oxygen intermediates and lipid peroxidation. Neuromolecular Med 2:71–85. https://doi.org/10.1385/NMM:2:1:71

    CAS  Article  PubMed  Google Scholar 

  68. Fornai F, Lenzi P, Gesi M, Soldani P, Ferrucci M, Lazzeri G, Capobianco L, Battaglia G, De Blasi A, Nicoletti F, Paparelli A (2004a) Methamphetamine produces neuronal inclusions in the nigrostriatal system and in PC12 cells. J Neurochem 88(1):114–123. https://doi.org/10.1046/j.1471-4159.2003.02137.x

    CAS  Article  PubMed  Google Scholar 

  69. Fornai F, Lenzi P, Gesi M, Ferrucci M, Lazzeri G, Capobianco L, de Blasi A, Battaglia G, Nicoletti F, Ruggieri S, Paparelli A (2004b) Similarities between methamphetamine toxicity and proteasome inhibition. Ann N Y Acad Sci 1025:162–170. https://doi.org/10.1196/annals.1316.021

    CAS  Article  PubMed  Google Scholar 

  70. Fornai F, Lenzi P, Ferrucci M, Lazzeri G, di Poggio AB, Natale G, Busceti CL, Biagioni F, Giusiani M, Ruggieri S, Paparelli A (2005) Occurrence of neuronal inclusions combined with increased nigral expression of alpha-synuclein within dopaminergic neurons following treatment with amphetamine derivatives in mice. Brain Res Bull 65:405–413. https://doi.org/10.1016/j.brainresbull.2005.02.022

    CAS  Article  PubMed  Google Scholar 

  71. Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55(3):259–272. https://doi.org/10.1097/00005072-199603000-00001

    CAS  Article  PubMed  Google Scholar 

  72. Frey K, Kilbourn M, Robinson T (1997) Reduced striatal vesicular monoamine transporters after neurotoxic but not after behaviorally-sensitizing doses of methamphetamine. Eur J Pharmacol 334:273–279. https://doi.org/10.1016/s0014-2999(97)01152-7

    CAS  Article  PubMed  Google Scholar 

  73. Fricks-Gleason AN, German CL, Hoonakker AJ, Friend DM, Ganesh KK, Carver AS, Hanson GR, Fleckenstein AE, Keefe KA (2016) An acute, epitope-specific modification in the dopamine transporter associated with methamphetamine-induced neurotoxicity. Synapse 70(4):139–146. https://doi.org/10.1002/syn.21891

    CAS  Article  PubMed  Google Scholar 

  74. Fujikawa K, Nakahara K, Takasugi N, Nishiya T, Ito A, Uchida K, Uehara T (2020) S-Nitrosylation at the active site decreases the ubiquitin-conjugating activity of ubiquitin-conjugating enzyme E2 D1 (UBE2D1), an ERAD-associated protein. Biochem Biophys Res Commun 524(4):910–915. https://doi.org/10.1016/j.bbrc.2020.02.011

    CAS  Article  PubMed  Google Scholar 

  75. Fumagalli F, Gainetdinov RR, Valenzano KJ, Caron MG (1998) Role of dopamine transporter in methamphetamine-induced neurotoxicity: Evidence from mice lacking the transporter. J Neurosci 18:4861–4869. https://doi.org/10.1523/JNEUROSCI.18-13-04861.1998

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Gao HM, Liu B, Zhang W, Hong JS (2003) Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson’s disease. FASEB J 17:1954–1956. https://doi.org/10.1096/fj.03-0109fje

    CAS  Article  PubMed  Google Scholar 

  77. Gao J, Liu R, Zhao E, Huang X, Nalls MA, Singleton AB, Chen H (2015) Head injury, potential interaction with genes, and risk for Parkinson’s disease. Parkinsonism Relat Disord 21(3):292–296. https://doi.org/10.1016/j.parkreldis.2014.12.033

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gash DM, Rutland K, Hudson NL, Sullivan PG, Bing G, Cass WA, Pandya JD, Liu M, Choi DY, Hunter RL, Gerhardt GA, Smith CD, Slevin JT, Prince TS (2008) Trichloroethylene: Parkinsonism and complex 1 mitochondrial neurotoxicity. Ann Neurol 63(2):184–192. https://doi.org/10.1002/ana.21288

    Article  PubMed  Google Scholar 

  79. Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290(5493):985–989. https://doi.org/10.1126/science.290.5493.985

    CAS  Article  PubMed  Google Scholar 

  80. Granado N, Ares-Santos S, O’Shea E, Vicario-Abejon C, Colado MI, Moratalla R (2010) Selective vulnerability in striosomes and in the nigrostriatal dopaminergic pathway after methamphetamine administration: early loss of TH in striosomes after methamphetamine. Neurotox Res 18:48–58. https://doi.org/10.1007/s12640-009-9106-1

    Article  PubMed  Google Scholar 

  81. Granado N, Ares-Santos S, Oliva I, O’Shea E, Martin ED, Colado MI, Moratalla R (2011a) Dopamine D2-receptor knockout mice are protected against dopaminergic neurotoxicity induced by methamphetamine or MDMA. Neurobiol Dis 42:391–403. https://doi.org/10.1016/j.nbd.2011.01.033

    CAS  Article  PubMed  Google Scholar 

  82. Granado N, Lastres-Becker I, Ares-Santos S, Oliva I, Martin E, Cuadrado A, Moratalla R (2011b) Nrf2 deficiency potentiates methamphetamine-induced dopaminergic axonal damage and gliosis in the striatum. Glia 59:1850–1863. https://doi.org/10.1002/glia.21229

    Article  PubMed  Google Scholar 

  83. Granado N, Ares-Santos S, Moratalla R (2013) Methamphetamine and Parkinson’s disease. Parkinsons Dis 2013:308052. https://doi.org/10.1155/2013/308052

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. Granado N, Ares-Santos S, Tizabi Y, Moratalla R (2018) Striatal Reinnervation Process after Acute Methamphetamine-Induced Dopaminergic Degeneration in Mice. Neurotox Res 34(3):627–639. https://doi.org/10.1007/s12640-018-9925-z

    CAS  Article  PubMed  Google Scholar 

  85. Graybiel AM, Ohta K, Roffler-Tarlov S (1990) Patterns of cell and fiber vulnerability in the mesostriatal system of the mutant mouse weaver. I. Gradients and compartments. J Neurosci 10(3):720–733. https://doi.org/10.1523/JNEUROSCI.10-03-00720.1990

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. Guehl D, Bezard E, Dovero S, Boraud T, Bioulac B, Gross C (1999) Trichloroethylene and parkinsonism: a human and experimental observation. Eur J Neurol 6(5):609–611. https://doi.org/10.1046/j.1468-1331.1999.650609.x

    CAS  Article  PubMed  Google Scholar 

  87. Guzman-Martinez L, Maccioni RB, Andrade V, Navarrete LP, Pastor MG, Ramos-Escobar N (2019) Neuroinflammation as a Common Feature of Neurodegenerative Disorders. Front Pharmacol 10:1008. https://doi.org/10.3389/fphar.2019.01008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. Hall ED, Andrus PK, Oostveen JA, Althaus JS, VonVoigtlander PF (1996) Neuroprotective effects of the dopamine D2/D3 agonist pramipexole against postischemic or methamphetamine-induced degeneration of nigrostriatal neurons. Brain Res 742(1–2):80–88. https://doi.org/10.1016/s0006-8993(96)00968-7

    CAS  Article  PubMed  Google Scholar 

  89. Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59(5):1609–1623. https://doi.org/10.1111/j.1471-4159.1992.tb10990.x

    CAS  Article  PubMed  Google Scholar 

  90. Harish G, Mahadevan A, Srinivas Bharath MM, Shankar SK (2013) Alteration in glutathione content and associated enzyme activities in the synaptic terminals but not in the non-synaptic mitochondria from the frontal cortex of Parkinson’s disease brains. Neurochem Res 38(1):186–200. https://doi.org/10.1007/s11064-012-0907-x

    CAS  Article  PubMed  Google Scholar 

  91. Hartmann A, Hunot S, Michel PP, Muriel MP, Vyas S, Faucheux BA, Mouatt-Prigent A, Turmel H, Srinivasan A, Ruberg M, Evan GI, Agid Y, Hirsch EC (2000) Caspase-3: A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci U S A 97(6):2875–2880. https://doi.org/10.1073/pnas.040556597

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. Hartmann A, Troadec JD, Hunot S, Kikly K, Faucheux BA, Mouatt-Prigent A, Ruberg M, Agid Y, Hirsch EC (2001) Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson’s disease, but pathway inhibition results in neuronal necrosis. J Neurosci 21(7):2247–2255. https://doi.org/10.1523/JNEUROSCI.21-07-02247.2001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. Harvey BK, Chou J, Shen H, Hoffer BJ, Wang Y (2009) Diadenosine tetraphosphate reduces toxicity caused by high-dose methamphetamine administration. Neurotoxicology 30(3):436–444. https://doi.org/10.1016/j.neuro.2009.02.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. Haslund-Vinding J, McBean G, Jaquet V, Vilhardt F (2017) NADPH oxidases in oxidant production by microglia: activating receptors, pharmacology and association with disease. Br J Pharmacol 174(12):1733–1749. https://doi.org/10.1111/bph.13425

    CAS  Article  PubMed  Google Scholar 

  95. Hastings TG, Lewis DA, Zigmond MJ (1996) Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc Natl Acad Sci U S A 93(5):1956–1961. https://doi.org/10.1073/pnas.93.5.1956

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. Hayashi T, Hirata H, Asanuma M, Ladenheim B, Tsao LI, Cadet JL, Su TP (2001) Delta opioid peptide [D-Ala2, D-Leu5]enkephalin causes a near complete blockade of the neuronal damage caused by a single high dose of methamphetamine: examining the role of p53. Synapse 39:305–312. https://doi.org/10.1002/1098-2396(20010315)39:4<305::AID-SYN1013>3.0.CO;2-E

  97. Hermida-Ameijeiras A, Méndez-Alvarez E, Sánchez-Iglesias S, Sanmartín-Suárez C, Soto-Otero R (2004) Autoxidation and MAO-mediated metabolism of dopamine as a potential cause of oxidative stress: role of ferrous and ferric ions. Neurochem Int 45:103–116. https://doi.org/10.1016/j.neuint.2003.11.018

    CAS  Article  PubMed  Google Scholar 

  98. Hirata H, Cadet JL (1997) p53-knockout mice are protected against the long-term effects of methamphetamine on dopaminergic terminals and cell bodies. J Neurochem 69:780–790. https://doi.org/10.1046/j.1471-4159.1997.69020780.x

    CAS  Article  PubMed  Google Scholar 

  99. Hodara R, Norris EH, Giasson BI, Mishizen-Eberz AJ, Lynch DR, Lee VM, Ischiropoulos H (2004) Functional consequences of alpha-synuclein tyrosine nitration: diminished binding to lipid vesicles and increased fibril formation. J Biol Chem 279(46):47746–44753. https://doi.org/10.1074/jbc.M408906200

    CAS  Article  PubMed  Google Scholar 

  100. Hodges AB, Ladenheim B, McCoy MT, Beauvais G, Cai N, Krasnova IN, Cadet JL (2011) Long-term protective effects of methamphetamine preconditioning against single-day methamphetamine toxic challenges. Curr Neuropharmacol 9:35–39. https://doi.org/10.2174/157015911795017344

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  101. Hoffmann AC, Minakaki G, Menges S, Salvi R, Savitskiy S, Kazman A, Vicente Miranda H, Mielenz D, Klucken J, Winkler J, Xiang W (2019) Extracellular aggregated alpha synuclein primarily triggers lysosomal dysfunction in neural cells prevented by trehalose. Sci Rep 9(1):544. https://doi.org/10.1038/s41598-018-35811-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  102. Hogan KA, Staal RG, Sonsalla PK (2000) Analysis of VMAT2 binding after methamphetamine or MPTP treatment: disparity between homogenates and vesicle preparations. J Neurochem 74:2217–2220. https://doi.org/10.1046/j.1471-4159.2000.0742217.x

    CAS  Article  PubMed  Google Scholar 

  103. Hotchkiss AJ, Gibb JW (1980) Long term effects of multiple doses of methamphetamine on tryptophan hydroxylase and tyrosine hydroxylase activity in rat brain. J Pharmacol Exp Ther 214:257–262

  104. Hou X, Fiesel FC, Truban D, Castanedes Casey M, Lin WL, Soto AI, Tacik P, Rousseau LG, Diehl NN, Heckman MG, Lorenzo-Betancor O, Ferrer I, Arbelo JM, Steele JC, Farrer MJ, Cornejo-Olivas M, Torres L, Mata IF, Graff-Radford NR, Wszolek ZK, Ross OA, Murray ME, Dickson DW, Springer W (2018) Age- and disease-dependent increase of the mitophagy marker phospho-ubiquitin in normal aging and Lewy body disease. Autophagy 14(8):1404–1418. https://doi.org/10.1080/15548627.2018.1461294

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. Hu Q, Wang G (2016) Mitochondrial dysfunction in Parkinson’s disease. Transl Neurodegener 5:14. https://doi.org/10.1186/s40035-016-0060-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  106. Huang NK, Wan FJ, Tseng CJ, Tung CS (1997) Nicotinamide attenuates methamphetamine-induced striatal dopamine depletion in rats. Neuroreport 8(8):1883–1885. https://doi.org/10.1097/00001756-199705260-00018

    CAS  Article  PubMed  Google Scholar 

  107. Huang E, Huang H, Guan T, Liu C, Qu D, Xu Y, Yang J, Yan L, Xiong Y, Liang T, Wang Q, Chen L (2019) Involvement of C/EBPβ-related signaling pathway in methamphetamine-induced neuronal autophagy and apoptosis. Toxicol Lett 312:11–21. https://doi.org/10.1016/j.toxlet.2019.05.003

    CAS  Article  PubMed  Google Scholar 

  108. Hunot S, Boissière F, Faucheux B, Brugg B, Mouatt-Prigent A, Agid Y, Hirsch EC (1996) Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 72(2):355–363. https://doi.org/10.1016/0306-4522(95)00578-1

    CAS  Article  PubMed  Google Scholar 

  109. Hunter RL, Cheng B, Choi DY, Liu M, Liu S, Cass WA, Bing G (2009) Intrastriatal lipopolysaccharide injection induces parkinsonism in C57/B6 mice. J Neurosci Res 87(8):1913–1921. https://doi.org/10.1002/jnr.22012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  110. Hyun DH, Lee MH, Halliwell B, Jenner P (2002) Proteasomal dysfunction induced by 4-hydroxy-2,3-trans-nonenal, an end-product of lipid peroxidation: a mechanism contributing to neurodegeneration? J Neurochem 83(2):360–370. https://doi.org/10.1046/j.1471-4159.2002.01125.x

    CAS  Article  PubMed  Google Scholar 

  111. Imam SZ, Newport GD, Islam F, Slikker W Jr, Ali SF (1999) Selenium, an antioxidant, protects against methamphetamine-induced dopaminergic neurotoxicity. Brain Res 818:575–578. https://doi.org/10.1016/s0006-8993(98)01311-0

    CAS  Article  PubMed  Google Scholar 

  112. Imam SZ, Newport GD, Itzhak Y, Cadet JL, Islam F, Slikker W Jr, Ali SF (2001a) Peroxynitrite plays a role in methamphetamine-induced dopaminergic neurotoxicity: evidence from mice lacking neuronal nitric oxide synthase gene or overexpressing copper-zinc superoxide dismutase. J Neurochem 76:745–749. https://doi.org/10.1046/j.1471-4159.2001.00029.x

    CAS  Article  PubMed  Google Scholar 

  113. Imam SZ, Itzhak Y, Cadet JL, Islam F, Slikker W Jr, Ali SF (2001b) Methamphetamine-induced alteration in striatal p53 and bcl-2 expressions in mice. Brain Res Mol Brain Res 91:174–178. https://doi.org/10.1016/s0169-328x(01)00139-5

    CAS  Article  PubMed  Google Scholar 

  114. Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y (2003) Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol 106(6):518–526. https://doi.org/10.1007/s00401-003-0766-2

    CAS  Article  PubMed  Google Scholar 

  115. Iravani MM, Syed E, Jackson MJ, Johnston LC, Smith LA, Jenner P (2005) A modified MPTP treatment regime produces reproducible partial nigrostriatal lesions in common marmosets. Eur J Neurosci 21(4):841–854. https://doi.org/10.1111/j.1460-9568.2005.03915.x

    Article  PubMed  Google Scholar 

  116. Itzhak Y, Ali SF (1996) The neuronal nitric oxide synthase inhibitor, 7-nitroindazole, protects against methamphetamine-induced neurotoxicity in vivo. J Neurochem 67:1770–1773. https://doi.org/10.1046/j.1471-4159.1996.67041770.x

    CAS  Article  PubMed  Google Scholar 

  117. Itzhak Y, Martin JL, Ali SF (2000) Comparison between the role of the neuronal and inducible nitric oxide synthase in methamphetamine-induced neurotoxicity and sensitization. Ann N Y Acad Sci 914:104–111. https://doi.org/10.1111/j.1749-6632.2000.tb05188.x

    CAS  Article  PubMed  Google Scholar 

  118. Jayanthi S, Deng X, Noailles PA, Ladenheim B, Cadet JL (2004) Methamphetamine induces neuronal apoptosis via cross-talks between endoplasmic reticulum and mitochondria-dependent death cascades. FASEB J 18:238–251. https://doi.org/10.1096/fj.03-0295com

    CAS  Article  PubMed  Google Scholar 

  119. Jung BD, Shin EJ, Nguyen XK, Jin CH, Bach JH, Park SJ, Nah SY, Wie MB, Bing G, Kim HC (2010) Potentiation of methamphetamine neurotoxicity by intrastriatal lipopolysaccharide administration. Neurochem Int 56:229–244. https://doi.org/10.1016/j.neuint.2009.10.005

    CAS  Article  PubMed  Google Scholar 

  120. Keller JN, Huang FF, Dimayuga ER, Maragos WF (2000) Dopamine induces proteasome inhibition in neural PC12 cell line. Free Radic Biol Med 29(10):1037–1042. https://doi.org/10.1016/s0891-5849(00)00412-3

    CAS  Article  PubMed  Google Scholar 

  121. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29:13435–13444. https://doi.org/10.1523/JNEUROSCI.3257-09.2009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  122. Killinger BA, Moszczynska A (2016) Epothilone D prevents binge methamphetamine-mediated loss of striatal dopaminergic markers. J Neurochem 136(3):510–525. https://doi.org/10.1111/jnc.13391

    CAS  Article  PubMed  Google Scholar 

  123. Kim HC, Jhoo WK, Choi DY, Im DH, Shin EJ, Suh JH, Floyd RA, Bing G (1999) Protection of methamphetamine nigrostriatal toxicity by dietary selenium. Brain Res 851:76–86. https://doi.org/10.1016/s0006-8993(99)02122-8

    CAS  Article  PubMed  Google Scholar 

  124. Kim HC, Jhoo WK, Shin EJ, Bing G (2000) Selenium deficiency potentiates methamphetamine-induced nigral neuronal loss; comparison with MPTP model. Brain Res 862:247–252. https://doi.org/10.1016/s0006-8993(00)02085-0

    CAS  Article  PubMed  Google Scholar 

  125. Kish SJ, Morito C, Hornykiewicz O (1985) Glutathione peroxidase activity in Parkinson’s disease brain. Neurosci Lett 58(3):343–346. https://doi.org/10.1016/0304-3940(85)90078-3

    CAS  Article  PubMed  Google Scholar 

  126. Klongpanichapak S, Govitrapong P, Sharma SK, Ebadi M (2006) Attenuation of cocaine and methamphetamine neurotoxicity by coenzyme Q10. Neurochem Res 31(3):303–311. https://doi.org/10.1007/s11064-005-9025-3

    CAS  Article  PubMed  Google Scholar 

  127. Knott C, Stern G, Wilkin GP (2000) Inflammatory regulators in Parkinson’s disease: iNOS, lipocortin-1, and cyclooxygenases-1 and – 2. Mol Cell Neurosci 16(6):724–739. https://doi.org/10.1006/mcne.2000.0914

    CAS  Article  PubMed  Google Scholar 

  128. Kocaturk NM, Gozuacik D (2018) Crosstalk between mammalian autophagy and the Ubiquitin-Proteasome system. Front Cell Dev Biol 6:128. https://doi.org/10.3389/fcell.2018.00128

    Article  PubMed  PubMed Central  Google Scholar 

  129. Kochen W, Kohlmüller D, De Biasi P, Ramsay R (2003) The endogeneous formation of highly chlorinated tetrahydro-beta-carbolines as a possible causative mechanism in idiopathic Parkinson’s disease. Adv Exp Med Biol 527:253–263. https://doi.org/10.1007/978-1-4615-0135-0_29

    CAS  Article  PubMed  Google Scholar 

  130. Koizumi H, Morigaki R, Okita S, Nagahiro S, Kaji R, Nakagawa M, Goto S (2013) Response of striosomal opioid signaling to dopamine depletion in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease: a potential compensatory role. Front Cell Neurosci 7:74. https://doi.org/10.3389/fncel.2013.00074

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  131. Koriem KM, Abdelhamid AZ, Younes HF (2013) Caffeic acid protects tissue antioxidants and DNA content in methamphetamine induced tissue toxicity in Sprague Dawley rats. Toxicol Mech Methods 23:134–143. https://doi.org/10.3109/15376516.2012.730561

    CAS  Article  PubMed  Google Scholar 

  132. Kousik SM, Carvey PM, Napier TC (2014) Methamphetamine self-administration results in persistent dopaminergic pathology: implications for Parkinson’s disease risk and reward-seeking. Eur J Neurosci 40:2707–2714. https://doi.org/10.1111/ejn.12628

    Article  PubMed  Google Scholar 

  133. Krasnova IN, Justinova Z, Ladenheim B, Jayanthi S, McCoy MT, Barnes C, Warner JE, Goldberg SR, Cadet JL (2010) Methamphetamine self-administration is associated with persistent biochemical alterations in striatal and cortical dopaminergic terminals in the rat. PLoS One 5:e8790. https://doi.org/10.1371/journal.pone.0008790

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  134. Krasnova IN, Chiflikyan M, Justinova Z, McCoy MT, Ladenheim B, Jayanthi S, Quintero C, Brannock C, Barnes C, Adair JE, Lehrmann E, Kobeissy FH, Gold MS, Becker KG, Goldberg SR, Cadet JL (2013) CREB phosphorylation regulates striatal transcriptional responses in the self-administration model of methamphetamine addiction in the rat. Neurobiol Dis 58:132–143. https://doi.org/10.1016/j.nbd.2013.05.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  135. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163. https://doi.org/10.1152/physrev.00013.2006

    CAS  Article  PubMed  Google Scholar 

  136. Langston JW, Ballard PA Jr (1983) Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. N Engl J Med 309(5):310. https://doi.org/10.1056/nejm198308043090511

    CAS  Article  PubMed  Google Scholar 

  137. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219(4587):979–980. https://doi.org/10.1126/science.6823561

    CAS  Article  PubMed  Google Scholar 

  138. Lappin JM, Darke S, Farrell M (2018) Methamphetamine use and future risk for Parkinson’s disease: Evidence and clinical implications. Drug Alcohol Depend 187:134–140. https://doi.org/10.1016/j.drugalcdep.2018.02.032

    CAS  Article  PubMed  Google Scholar 

  139. Lau JWS, Senok S, Stadlin A (2000) Methamphetamine-induced oxidative stress in cultured mouse astrocytes. Ann N Y Acad Sci 914:146–156. https://doi.org/10.1111/j.1749-6632.2000.tb05192.x

    CAS  Article  PubMed  Google Scholar 

  140. LaVoie MJ, Hastings TG (1999) Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine. J Neurosci 19:1484–1491. https://doi.org/10.1523/JNEUROSCI.19-04-01484.1999

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  141. LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ (2005) Dopamine covalently modifies and functionally inactivates parkin. Nat Med 11(11):1214–1221. https://doi.org/10.1038/nm1314

    CAS  Article  PubMed  Google Scholar 

  142. Lazzeri G, Lenzi P, Gesi M, Ferrucci M, Fulceri F, Ruggieri S, Bruno V, Fornai F (2006) In PC12 cells neurotoxicity induced by methamphetamine is related to proteasome inhibition. Ann N Y Acad Sci 1074:174–177. https://doi.org/10.1196/annals.1369.017

    CAS  Article  PubMed  Google Scholar 

  143. Leão AH, Sarmento-Silva AJ, Santos JR, Ribeiro AM, Silva RH (2015) Molecular, neurochemical, and behavioral hallmarks of reserpine as a model for Parkinson’s disease: New perspectives to a long-standing model. Brain Pathol 25(4):377–390. https://doi.org/10.1111/bpa.12253

    CAS  Article  PubMed  Google Scholar 

  144. Lee FJ, Liu F, Pristupa ZB, Niznik HB (2001) Direct binding and functional coupling of alpha-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB J 15(6):916–926. https://doi.org/10.1096/fj.00-0334com

    CAS  Article  PubMed  Google Scholar 

  145. Lenzi P, Marongiu R, Falleni A, Gelmetti V, Busceti CL, Michiorri S, Valente EM, Fornai F (2012) A subcellular analysis of genetic modulation of PINK1 on mitochondrial alterations, autophagy and cell death. Arch Ital Biol 150(2–3):194–217. https://doi.org/10.4449/aib.v150i2/3.1417

    CAS  Article  PubMed  Google Scholar 

  146. Li B, Chen R, Chen L, Qiu P, Ai X, Huang E, Huang W, Chen C, Liu C, Lin Z, Xie WB, Wang H (2017) Effects of DDIT4 in Methamphetamine-induced autophagy and apoptosis in dopaminergic neurons. Mol Neurobiol 54(3):1642–1660. https://doi.org/10.1007/s12035-015-9637-9

    CAS  Article  PubMed  Google Scholar 

  147. Li X, Wu F, Xue L, Wang B, Li J, Chen Y, Chen T (2018) Methamphetamine causes neurotoxicity by promoting polarization of macrophages and inflammatory response. Hum Exp Toxicol 37(5):486–495. https://doi.org/10.1177/0960327117714039

    CAS  Article  PubMed  Google Scholar 

  148. Lin M, Chandramani-Shivalingappa P, Jin H, Ghosh A, Anantharam V, Ali S, Kanthasamy AG, Kanthasamy A (2012) Methamphetamine-induced neurotoxicity linked to ubiquitin-proteasome system dysfunction and autophagy-related changes that can be modulated by protein kinase C delta in dopaminergic neuronal cells. Neuroscience 210:308–332. https://doi.org/10.1016/j.neuroscience.2012.03.004

    CAS  Article  PubMed  Google Scholar 

  149. Lindersson E, Beedholm R, Højrup P, Moos T, Gai W, Hendil KB, Jensen PH (2004) Proteasomal inhibition by alpha-synuclein filaments and oligomers. J Biol Chem 279(13):12924–12934. https://doi.org/10.1074/jbc.M306390200

    CAS  Article  PubMed  Google Scholar 

  150. Liu M, Choi DY, Hunter RL, Pandya JD, Cass WA, Sullivan PG, Kim HC, Gash DM, Bing G (2010) Trichloroethylene induces dopaminergic neurodegeneration in Fisher 344 rats. J Neurochem 112(3):773–783. https://doi.org/10.1111/j.1471-4159.2009.06497.x

    CAS  Article  PubMed  Google Scholar 

  151. Liu M, Bing G (2011) Lipopolysaccharide animal models for Parkinson’s disease. Parkinsons Dis. 2011:327089. https://doi.org/10.4061/2011/327089

  152. Liu M, Shin EJ, Dang DK, Jin CH, Lee PH, Jeong JH, Park SJ, Kim YS, Xing B, Xin T, Bing G, Kim HC (2018) Trichloroethylene and Parkinson’s disease: Risk Assessment. Mol Neurobiol 55(7):6201–6214. https://doi.org/10.1007/s12035-017-0830-x

    CAS  Article  PubMed  Google Scholar 

  153. Liu X, Silverstein PS, Singh V, Shah A, Qureshi N, Kumar A (2012) Methamphetamine increases LPS-mediated expression of IL-8, TNF-α and IL-1β in human macrophages through common signaling pathways. PLoS One 7(3):e33822. https://doi.org/10.1371/journal.pone.0033822

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  154. Liu B, Traini R, Killinger B, Schneider B, Moszczynska A (2013) Overexpression of parkin in the rat nigrostriatal dopamine system protects against methamphetamine neurotoxicity. Exp Neurol 247:359–372. https://doi.org/10.1016/j.expneurol.2013.01.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  155. Lock EA, Zhang J, Checkoway H (2013) Solvents and Parkinson disease: a systematic review of toxicological and epidemiological evidence. Toxicol Appl Pharmacol 266(3):345–355. https://doi.org/10.1016/j.taap.2012.11.016

    CAS  Article  PubMed  Google Scholar 

  156. Lotharius J, Barg S, Wiekop P, Lundberg C, Raymon HK, Brundin P (2002) Effect of mutant alpha-synuclein on dopamine homeostasis in a new human mesencephalic cell line. J Biol Chem 277(41):38884–38894. https://doi.org/10.1074/jbc.M205518200

    CAS  Article  PubMed  Google Scholar 

  157. Lu T, Kim PP, Greig NH, Luo Y (2017) Dopaminergic Neuron-Specific Deletion of p53 Gene Attenuates Methamphetamine Neurotoxicity. Neurotox Res 32(2):218–230. https://doi.org/10.1007/s12640-017-9723-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  158. Magrinelli F, Picelli A, Tocco P, Federico A, Roncari L, Smania N, Zanette G, Tamburin S (2016) Pathophysiology of motor dysfunction in Parkinson’s disease as the rationale for drug treatment and rehabilitation. Parkinsons Dis 2016:9832839. https://doi.org/10.1155/2016/9832839

  159. Maragos WF, Jakel R, Chesnut D, Pocernich CB, Butterfield DA, St Clair D, Cass WA (2000) Methamphetamine toxicity is attenuated in mice that overexpress human manganese superoxide dismutase. Brain Res 878:218–222. https://doi.org/10.1016/s0006-8993(00)02707-4

    CAS  Article  PubMed  Google Scholar 

  160. Maragos WF, Young KL, Turchan JT, Guseva M, Pauly JR, Nath A, Cass WA (2002) Human immunodeficiency virus-1 Tat protein and methamphetamine interact synergistically to impair striatal dopaminergic function. J Neurochem 83:955–963. https://doi.org/10.1046/j.1471-4159.2002.01212.x

    CAS  Article  PubMed  Google Scholar 

  161. Marí M, Morales A, Colell A, García-Ruiz C, Fernández-Checa JC (2009) Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11(11):2685–2700. https://doi.org/10.1089/ARS.2009.2695

    Article  PubMed  PubMed Central  Google Scholar 

  162. McCann UD, Kuwabara H, Kumar A, Palermo M, Abbey R, Brasic J, Ye W, Alexander M, Dannals RF, Wong DF, Ricaurte GA (2008) Persistent cognitive and dopamine transporter deficits in abstinent methamphetamine users. Synapse 62:91–100. https://doi.org/10.1002/syn.20471

    CAS  Article  PubMed  Google Scholar 

  163. McConnell SE, O’Banion MK, Cory-Slechta DA, Olschowka JA, Opanashuk LA (2015) Characterization of binge-dosed methamphetamine-induced neurotoxicity and neuroinflammation. Neurotoxicology 50:131–141. https://doi.org/10.1016/j.neuro.2015.08.006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  164. McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38(8):1285–1291. https://doi.org/10.1212/wnl.38.8.1285

    CAS  Article  PubMed  Google Scholar 

  165. McNaught KS, Jenner P (2001) Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci Lett 297(3):191–194. https://doi.org/10.1016/s0304-3940(00)01701-8

    CAS  Article  PubMed  Google Scholar 

  166. McNaught KS, Belizaire R, Isacson O, Jenner P, Olanow CW (2003) Altered proteasomal function in sporadic Parkinson’s disease. Exp Neurol 179(1):38–46. https://doi.org/10.1006/exnr.2002.8050

    CAS  Article  PubMed  Google Scholar 

  167. McNaught KS, Jackson T, JnoBaptiste R, Kapustin A, Olanow CW (2006) Proteasomal dysfunction in sporadic Parkinson’s disease. Neurology 66(10 Suppl 4):S37–S49. https://doi.org/10.1212/wnl.66.10_suppl_4.s37

    CAS  Article  PubMed  Google Scholar 

  168. Mendieta L, Granado N, Aguilera J, Tizabi Y, Moratalla R (2016) Fragment C domain of tetanus toxin mitigates methamphetamine Neurotoxicity and its motor consequences in mice. Int J Neuropsychopharmacol 19(8):pyw021. https://doi.org/10.1093/ijnp/pyw021

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  169. Meng Y, Qiao H, Ding J, He Y, Fan H, Li C, Qiu P (2020) Effect of Parkin on methamphetamine-induced α-synuclein degradation dysfunction in vitro and in vivo. Brain Behav 10(4):e01574. https://doi.org/10.1002/brb3.1574

    Article  PubMed  PubMed Central  Google Scholar 

  170. Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, Nagatsu T (1994) Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett 180(2):147–150. https://doi.org/10.1016/0304-3940(94)90508-8

    CAS  Article  PubMed  Google Scholar 

  171. Mogi M, Kondo T, Mizuno Y, Nagatsu T (2007) p53 protein, interferon-gamma, and NF-kappaB levels are elevated in the parkinsonian brain. Neurosci Lett 414(1):94–97. https://doi.org/10.1016/j.neulet.2006.12.003

    CAS  Article  PubMed  Google Scholar 

  172. Monzani E, Nicolis S, Dell’Acqua S, Capucciati A, Bacchella C, Zucca FA, Mosharov EV, Sulzer D, Zecca L, Casella L (2019) Dopamine, oxidative stress and protein-quinone modifications in parkinson’s and other neurodegenerative diseases. Angew Chem Int Ed Engl 58(20):6512–6527. https://doi.org/10.1002/anie.201811122

    CAS  Article  PubMed  Google Scholar 

  173. Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 28:57–87. https://doi.org/10.1146/annurev.neuro.28.061604.135718

    CAS  Article  PubMed  Google Scholar 

  174. Moors TE, Paciotti S, Ingrassia A, Quadri M, Breedveld G, Tasegian A, Chiasserini D, Eusebi P, Duran-Pacheco G, Kremer T, Calabresi P, Bonifati V, Parnetti L, Beccari T, van de Berg WDJ (2019) Characterization of Brain Lysosomal Activities in GBA-Related and Sporadic Parkinson’s Disease and Dementia with Lewy Bodies. Mol Neurobiol 56(2):1344–1355. https://doi.org/10.1007/s12035-018-1090-0

  175. Mor DE, Tsika E, Mazzulli JR, Gould NS, Kim H, Daniels MJ, Doshi S, Gupta P, Grossman JL, Tan VX, Kalb RG, Caldwell KA, Caldwell GA, Wolfe JH, Ischiropoulos H (2017) Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration. Nat Neurosci 20(11):1560–1568. https://doi.org/10.1038/nn.4641

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  176. Morgan ME, Gibb JW (1980) Short-term and long-term effects of methamphetamine on biogenic amine metabolism in extra-striatal dopaminergic nuclei. Neuropharmacology 19:989–995. https://doi.org/10.1016/0028-3908(80)90010-6

    CAS  Article  PubMed  Google Scholar 

  177. Moszczynska A, Fitzmaurice P, Ang L, Kalasinsky KS, Schmunk GA, Peretti FJ, Aiken SS, Wickham DJ, Kish SJ (2004) Why is parkinsonism not a feature of human methamphetamine users? Brain 127:363–370. https://doi.org/10.1093/brain/awh046

    Article  PubMed  Google Scholar 

  178. Moszczynska A, Yamamoto BK (2011) Methamphetamine oxidatively damages parkin and decreases the activity of 26S proteasome in vivo. J Neurochem 116(6):1005–1017. https://doi.org/10.1111/j.1471-4159.2010.07147.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  179. Murphy KE, Gysbers AM, Abbott SK, Spiro AS, Furuta A, Cooper A, Garner B, Kabuta T, Halliday GM (2015) Lysosomal-associated membrane protein 2 isoforms are differentially affected in early Parkinson’s disease. Mov Disord 30(12):1639–1647. https://doi.org/10.1002/mds.26141

    CAS  Article  PubMed  Google Scholar 

  180. Nakahara T, Kuroki T, Ohta E, Kajihata T, Yamada H, Yamanaka M, Hashimoto K, Tsutsumi T, Hirano M, Uchimura H (2003) Effect of the neurotoxic dose of methamphetamine on gene expression of parkin and Pael-receptors in rat striatum. Parkinsonism Relat Disord 9(4):213–219. https://doi.org/10.1016/s1353-8020(02)00052-4

    CAS  Article  PubMed  Google Scholar 

  181. Nakamura T, Cieplak P, Cho DH, Godzik A, Lipton SA (2010) S-nitrosylation of Drp1 links excessive mitochondrial fission to neuronal injury in neurodegeneration. Mitochondrion 10(5):573–578. https://doi.org/10.1016/j.mito.2010.04.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  182. Nakamura T, Lipton SA (2017) ‘SNO’-storms compromise protein activity and mitochondrial metabolism in neurodegenerative disorders. Trends Endocrinol Metab 28(12):879–892. https://doi.org/10.1016/j.tem.2017.10.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  183. Nam Y, Wie MB, Shin EJ, Nguyen TT, Nah SY, Ko SK, Jeong JH, Jang CG, Kim HC (2015) Ginsenoside Re protects methamphetamine-induced mitochondrial burdens and proapoptosis via genetic inhibition of protein kinase C δ in human neuroblastoma dopaminergic SH-SY5Y cell lines. J Appl Toxicol 35:927–944. https://doi.org/10.1002/jat.3093

    CAS  Article  PubMed  Google Scholar 

  184. Navarro A, Boveris A, Bández MJ, Sánchez-Pino MJ, Gómez C, Muntané G, Ferrer I (2009) Human brain cortex: mitochondrial oxidative damage and adaptive response in Parkinson disease and in dementia with Lewy bodies. Free Radic Biol Med 46(12):1574–1580. https://doi.org/10.1016/j.freeradbiomed.2009.03.007

    CAS  Article  PubMed  Google Scholar 

  185. Nguyen XK, Lee J, Shin EJ, Dang DK, Jeong JH, Nguyen TT, Nam Y, Cho HJ, Lee JC, Park DH, Jang CG, Hong JS, Nabeshima T, Kim HC (2015) Liposomal melatonin rescues methamphetamine-elicited mitochondrial burdens, pro-apoptosis, and dopaminergic degeneration through the inhibition PKCδ gene. J Pineal Res 58:86–106. https://doi.org/10.1111/jpi.12195

    CAS  Article  PubMed  Google Scholar 

  186. O’Callaghan JP, Miller DB (1994) Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse. J Pharmacol Exp Ther 270:741–751

    PubMed  Google Scholar 

  187. Oh CK, Sultan A, Platzer J, Dolatabadi N, Soldner F, McClatchy DB, Diedrich JK, Yates JR 3rd, Ambasudhan R, Nakamura T, Jaenisch R, Lipton SA (2017) S-Nitrosylation of PINK1 attenuates PINK1/Parkin-dependent mitophagy in hiPSC-based Parkinson’s disease models. Cell Rep 21(8):2171–2182. https://doi.org/10.1016/j.celrep.2017.10.068

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  188. Okada K, Wangpoengtrakul C, Osawa T, Toyokuni S, Tanaka K, Uchida K (1999) 4-Hydroxy-2-nonenal-mediated impairment of intracellular proteolysis during oxidative stress. Identification of proteasomes as target molecules. J Biol Chem 274(34):23787–23793. https://doi.org/10.1074/jbc.274.34.23787

    CAS  Article  PubMed  Google Scholar 

  189. Olanow CW, Tatton WG (1999) Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 22:123–144. https://doi.org/10.1146/annurev.neuro.22.1.123

    CAS  Article  PubMed  Google Scholar 

  190. Olanow CW, Stern MB, Sethi K (2009) The scientific and clinical basis for the treatment of Parkinson disease (2009). Neurology 72(21 Suppl4):S1–S136. https://doi.org/10.1212/WNL.0b013e3181a1d44c

    Article  PubMed  Google Scholar 

  191. Pan AL, Hasalliu E, Hasalliu M, Angulo JA (2020) Epigallocatechin gallate mitigates the methamphetamine-induced striatal dopamine terminal toxicity by preventing oxidative stress in the mouse brain. Neurotox Res 37(4):883–892. https://doi.org/10.1007/s12640-020-00177-1

    CAS  Article  PubMed  Google Scholar 

  192. Parameyong A, Charngkaew K, Govitrapong P, Chetsawang B (2013) Melatonin attenuates methamphetamine-induced disturbances in mitochondrial dynamics and degeneration in neuroblastoma SH-SY5Y cells. J Pineal Res 55(3):313–323. https://doi.org/10.1111/jpi.12078

    CAS  Article  PubMed  Google Scholar 

  193. Parameyong A, Govitrapong P, Chetsawang B (2015) Melatonin attenuates the mitochondrial translocation of mitochondrial fission proteins and Bax, cytosolic calcium overload and cell death in methamphetamine-induced toxicity in neuroblastoma SH-SY5Y cells. Mitochondrion 24:1–8. https://doi.org/10.1016/j.mito.2015.07.004

    CAS  Article  PubMed  Google Scholar 

  194. Park MJ, Lee SK, Lim MA, Chung HS, Cho SI, Jang CG, Lee SM (2006) Effect of alpha-tocopherol and deferoxamine on methamphetamine-induced neurotoxicity. Brain Res 1109:176–182. https://doi.org/10.1016/j.brainres.2006.06.030

    CAS  Article  PubMed  Google Scholar 

  195. Park M, Hennig B, Toborek M (2012) Methamphetamine alters occludin expression via NADPH oxidase-induced oxidative insult and intact caveolae. J Cell Mol Med 16(2):362–375. https://doi.org/10.1111/j.1582-4934.2011.01320.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  196. Park JH, Seo YH, Jang JH, Jeong CH, Lee S, Park B (2017) Asiatic acid attenuates methamphetamine-induced neuroinflammation and neurotoxicity through blocking of NF-kB/STAT3/ERK and mitochondria-mediated apoptosis pathway. J Neuroinflammation 14(1):240. https://doi.org/10.1186/s12974-017-1009-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  197. Park JS, Davis RL, Sue CM (2018) Mitochondrial dysfunction in Parkinson’s disease: New mechanistic insights and therapeutic perspectives. Curr Neurol Neurosci Rep 18(5):21. https://doi.org/10.1007/s11910-018-0829-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  198. Parker WD Jr, Parks JK, Swerdlow RH (2008) Complex I deficiency in Parkinson’s disease frontal cortex. Brain Res 1189:215–218. https://doi.org/10.1016/j.brainres.2007.10.061

    CAS  Article  PubMed  Google Scholar 

  199. Paxinou E, Chen Q, Weisse M, Giasson BI, Norris EH, Rueter SM, Trojanowski JQ, Lee VM, Ischiropoulos H (2001) Induction of alpha-synuclein aggregation by intracellular nitrative insult. J Neurosci 21(20):8053–8061. https://doi.org/10.1523/JNEUROSCI.21-20-08053.2001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  200. Peng K, Xiao J, Yang L, Ye F, Cao J, Sai Y (2019) Mutual antagonism of PINK1/Parkin and PGC-1α contributes to maintenance of mitochondrial homeostasis in rotenone-induced neurotoxicity. Neurotox Res 35(2):331–343. https://doi.org/10.1007/s12640-018-9957-4

    CAS  Article  PubMed  Google Scholar 

  201. Pham AN, Waite TD (2014) Cu(II)-catalyzed oxidation of dopamine in aqueous solutions: mechanism and kinetics. J Inorg Biochem 137:74–84. https://doi.org/10.1016/j.jinorgbio.2014.03.018

    CAS  Article  PubMed  Google Scholar 

  202. Plotegher N, Duchen MR (2017) Crosstalk between Lysosomes and Mitochondria in Parkinson’s disease. Front Cell Dev Biol 5:110. https://doi.org/10.3389/fcell.2017.00110

    Article  PubMed  PubMed Central  Google Scholar 

  203. Prince JA, Yassin MS, Oreland L (1997) Normalization of cytochrome-c oxidase activity in the rat brain by neuroleptics after chronic treatment with PCP or methamphetamine. Neuropharmacology 36(11–12):1665–1678. https://doi.org/10.1016/s0028-3908(97)00152-4

    CAS  Article  PubMed  Google Scholar 

  204. Qiao D, Xu J, Le C, Huang E, Liu C, Qiu P, Lin Z, Xie WB, Wang H (2014) Insulin- like growth factor binding protein 5 (IGFBP5) mediates methamphetamine-induced dopaminergic neuron apoptosis. Toxicol Lett 230(3):444–453. https://doi.org/10.1016/j.toxlet.2014.08.010

    CAS  Article  PubMed  Google Scholar 

  205. Qiao HH, Zhu LN, Wang Y, Hui JL, Xie WB, Liu C, Chen L, Qiu PM (2019) Implications of alpha-synuclein nitration at tyrosine 39 in methamphetamine-induced neurotoxicity in vitro and in vivo. Neural Regen Res 14(2):319–327. https://doi.org/10.4103/1673-5374.244795

    Article  PubMed  PubMed Central  Google Scholar 

  206. Qin L, Liu Y, Hong JS, Crews FT (2013) NADPH oxidase and aging drive microglial activaton, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration. Glia 61:855–868. https://doi.org/10.1002/glia.22479

    Article  PubMed  PubMed Central  Google Scholar 

  207. Racay P, Tatarkova Z, Drgova A, Kaplan P, Dobrota D (2007) Effect of ischemic preconditioning on mitochondrial dysfunction and mitochondrial p53 translocation after transient global cerebral ischemia in rats. Neurochem Res 32:1823–1832. https://doi.org/10.1007/s11064-007-9437-3

    CAS  Article  PubMed  Google Scholar 

  208. Raineri M, Peskin V, Goitia B, Taravini IR, Giorgeri S, Urbano FJ, Bisagno V (2011) Attenuated methamphetamine induced neurotoxicity by modafinil administration in mice. Synapse 65(10):1087–1098. https://doi.org/10.1002/syn.20943

    CAS  Article  PubMed  Google Scholar 

  209. Raineri M, Gonzalez B, Goitia B, Garcia-Rill E, Krasnova IN, Cadet JL, Urbano FJ, Bisagno V (2012) Modafinil abrogates methamphetamine-induced neuroinflammation and apoptotic effects in the mouse striatum. PLoS One 7:e46599. https://doi.org/10.1371/journal.pone.0046599

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  210. Raimundo N, Fernández-Mosquera L, Yambire KF, Diogo CV (2016) Mechanisms of communication between mitochondria and lysosomes. Int J Biochem Cell Biol 79:345–349. https://doi.org/10.1016/j.biocel.2016.08.020

    CAS  Article  PubMed  Google Scholar 

  211. Reichel CM, Ramsey LA, Schwendt M, McGinty JF, See RE (2012) Methamphetamine-induced changes in the object recognition memory circuit. Neuropharmacology 62:1119–1126. https://doi.org/10.1016/j.neuropharm.2011.11.003

    CAS  Article  PubMed  Google Scholar 

  212. Reiner DJ, Yu SJ, Shen H, He Y, Bae E, Wang Y (2014) 9-Cis retinoic acid protects against methamphetamine-induced neurotoxicity in nigrostriatal dopamine neurons. Neurotox Res 25(3):248–261. https://doi.org/10.1007/s12640-013-9413-4

    CAS  Article  PubMed  Google Scholar 

  213. Santos D, Esteves AR, Silva DF, Januário C, Cardoso SM (2015) The impact of mitochondrial fusion and fission modulation in sporadic parkinson’ disease. Mol Neurobiol 52(1):573–586. https://doi.org/10.1007/s12035-014-8893-4

    CAS  Article  PubMed  Google Scholar 

  214. Schain M, Kreisl WC (2017) Neuroinflammation in neurodegenerative disorders-a review. Curr Neurol Neurosci Rep 17(3):25. https://doi.org/10.1007/s11910-017-0733-2

    CAS  Article  PubMed  Google Scholar 

  215. Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 333(8649):1269. https://doi.org/10.1016/s0140-6736(89)92366-0

    Article  Google Scholar 

  216. Seemann S, Hainaut P (2005) Roles of thioredoxin reductase 1 and APE/Ref-1 in the control of basal p53 stability and activity. Oncogene 24:3853–3863. https://doi.org/10.1038/sj.onc.1208549

    CAS  Article  PubMed  Google Scholar 

  217. Segal DS, Kuczenski R, O’Neil ML, Melega WP, Cho AK (2003) Escalating dose methamphetamine pretreatment alters the behavioral and neurochemical profiles associated with exposure to a high-dose methamphetamine binge. Neuropsychopharmacology 28:1730–1740. https://doi.org/10.1038/sj.npp.1300247

    CAS  Article  PubMed  Google Scholar 

  218. Seiden LS, Commins DL, Vosmer G, Axt K, Marek G (1988) Neurotoxicity in dopamine and 5-hydroxytryptamine terminal fields: a regional analysis in nigrostriatal and mesolimbic projections. Ann NY Acad Sci 537:161–172. https://doi.org/10.1111/j.1749-6632.1988.tb42104.x

    CAS  Article  PubMed  Google Scholar 

  219. Sekar S, Taghibiglou C (2020) Nuclear accumulation of GAPDH, GluA2 and p53 in post-mortem substantia nigral region of patients with Parkinson’s disease. Neurosci Lett 716:134641. https://doi.org/10.1016/j.neulet.2019.134641

    CAS  Article  PubMed  Google Scholar 

  220. Shah A, Kumar S, Simon SD, Singh DP, Kumar A (2013) HIV gp120- and methamphetamine-mediated oxidative stress induces astrocyte apoptosis via cytochrome P450 2E1. Cell Death Dis 4(10):e850. https://doi.org/10.1038/cddis.2013.374

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  221. Shin EJ, Duong CX, Nguyen TX, Bing G, Bach JH, Park DH, Nakayama K, Ali SF, Kanthasamy AG, Cadet JL, Nabeshima T, Kim HC (2011) PKCδ inhibition enhances tyrosine hydroxylase phosphorylation in mice after methamphetamine treatment. Neurochem Int 59:39–50. https://doi.org/10.1016/j.neuint.2011.03.022

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  222. Shin EJ, Duong CX, Nguyen XK, Li Z, Bing G, Bach JH, Park DH, Nakayama K, Ali SF, Kanthasamy AG, Cadet JL, Nabeshima T, Kim HC (2012) Role of oxidative stress in methamphetamine-induced dopaminergic toxicity mediated by protein kinase Cδ. Behav Brain Res 232:98–113. https://doi.org/10.1016/j.bbr.2012.04.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  223. Shin EJ, Shin SW, Nguyen TT, Park DH, Wie MB, Jang CG, Nah SY, Yang BW, Ko SK, Nabeshima T, Kim HC (2014) Ginsenoside Re rescues methamphetamine-induced oxidative damage, mitochondrial dysfunction, microglial activation, and dopaminergic degeneration by inhibiting the protein kinase Cδ gene. Mol Neurobiol 49:1400–1421. https://doi.org/10.1007/s12035-013-8617-1

    CAS  Article  PubMed  Google Scholar 

  224. Shin EJ, Nam Y, Lee JW, Nguyen PT, Yoo JE, Tran TV, Jeong JH, Jang CG, Oh YJ, Youdim MB, Lee PH, Nabeshima T, Kim HC (2016) N-Methyl, N-propynyl-2-phenylethylamine (MPPE), a selegiline analog, attenuates MPTP-induced dopaminergic toxicity with guaranteed behavioral safety: Involvement of inhibitions of mitochondrial oxidative burdens and p53 gene-elicited pro-apoptotic change. Mol Neurobiol 53(9):6251–6269. https://doi.org/10.1007/s12035-015-9527-1

    CAS  Article  PubMed  Google Scholar 

  225. Shin EJ, Tran HQ, Nguyen PT, Jeong JH, Nah SY, Jang CG, Nabeshima T, Kim HC (2018) Role of mitochondria in methamphetamine-induced dopaminergic neurotoxicity: Involvement in oxidative stress, neuroinflammation, and pro-apoptosis-a review. Neurochem Res 43(1):66–78. https://doi.org/10.1007/s11064-017-2318-5

    CAS  Article  PubMed  Google Scholar 

  226. Shin EJ, Jeong JH, Sharma G, Sharma N, Kim DJ, Pham DT, Trinh QD, Dang DK, Nah SY, Bing G, Kim HC (2019) Protein kinase Cδ mediates methamphetamine-induced dopaminergic neurotoxicity in mice via activation of microsomal epoxide hydrolase. Food Chem Toxicol 133:110761. https://doi.org/10.1016/j.fct.2019.110761

    CAS  Article  PubMed  Google Scholar 

  227. Shin HW, Chung SJ (2012) Drug-induced parkinsonism. J Clin Neurol 8(1):15–21. https://doi.org/10.3988/jcn.2012.8.1.15

    Article  PubMed  PubMed Central  Google Scholar 

  228. Shokrzadeh M, Zamani E, Mehrzad M, Norian Y, Shaki F (2015) Protective effects of propofol against methamphetamine-induced neurotoxicity. Toxicol Int 22(1):92–99. https://doi.org/10.4103/0971-6580.172250

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  229. Sian J, Dexter DT, Lees AJ, Daniel S, Jenner P, Marsden CD (1994) Glutathione-related enzymes in brain in Parkinson’s disease. Ann Neurol 36(3):356–361. https://doi.org/10.1002/ana.410360306

    CAS  Article  PubMed  Google Scholar 

  230. Simola N, Morelli M, Carta AR (2007) The 6-hydroxydopamine model of Parkinson’s disease. Neurotox Res 11(3–4):151–167. https://doi.org/10.1007/BF03033565

  231. Sipos I, Tretter L, Adam-Vizi V (2003) Quantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals. J Neurochem 84(1):112–118. https://doi.org/10.1046/j.1471-4159.2003.01513.x

    CAS  Article  PubMed  Google Scholar 

  232. Smeyne RJ, Jackson-Lewis V (2005) The MPTP model of Parkinson’s disease. Brain Res Mol Brain Res 134(1):57–66. https://doi.org/10.1016/j.molbrainres.2004.09.017

    CAS  Article  PubMed  Google Scholar 

  233. Snyder H, Mensah K, Theisler C, Lee J, Matouschek A, Wolozin B (2003) Aggregated and monomeric alpha-synuclein bind to the S6’ proteasomal protein and inhibit proteasomal function. J Biol Chem 278(14):11753–11759. https://doi.org/10.1074/jbc.M208641200

    CAS  Article  PubMed  Google Scholar 

  234. Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds GP, Hebenstreit G, Youdim MB (1988) Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 74(3):199–205. https://doi.org/10.1007/BF01244786

    CAS  Article  PubMed  Google Scholar 

  235. Sofic E, Lange KW, Jellinger K, Riederer P (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett 142(2):128–130. https://doi.org/10.1016/0304-3940(92)90355-b

  236. Song Z, Ghochani M, McCaffery JM, Frey TG, Chan DC (2009) Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol Biol Cell 20(15):3525–3532. https://doi.org/10.1091/mbc.e09-03-0252

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  237. Song L, Cortopassi G (2015) Mitochondrial complex I defects increase ubiquitin in substantia nigra. Brain Res 1594:82–91. https://doi.org/10.1016/j.brainres.2014.11.013

    CAS  Article  PubMed  Google Scholar 

  238. Song C, Charli A, Luo J, Riaz Z, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG (2019) Mechanistic interplay between autophagy and apoptotic signaling in endosulfan-induced dopaminergic neurotoxicity: Relevance to the adverse outcome pathway in pesticide neurotoxicity. Toxicol Sci 169(2):333–352. https://doi.org/10.1093/toxsci/kfz049

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  239. Sonsalla PK, Jochnowitz ND, Zeevalk GD, Oostveen JA, Hall ED (1996) Treatment of mice with methamphetamine produces cell loss in the substantia nigra. Brain Res 738:172–175. https://doi.org/10.1016/0006-8993(96)00995-x

    CAS  Article  PubMed  Google Scholar 

  240. Speidel D (2010) Transcription-independent p53 apoptosis: an alternative route to death. Trends Cell Biol 20:14–24. https://doi.org/10.1016/j.tcb.2009.10.002

    CAS  Article  PubMed  Google Scholar 

  241. Sriram K, Miller DB, O’Callaghan JP (2006) Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-alpha. J Neurochem 96:706–718. https://doi.org/10.1111/j.1471-4159.2005.03566.x

    CAS  Article  PubMed  Google Scholar 

  242. Sulzer D, Sonders MS, Poulsen NW, Galli A (2005) Mechanisms of neurotransmitter release by amphetamines: A review. Prog Neurobiol 75:406–433. https://doi.org/10.1016/j.pneurobio.2005.04.003

    CAS  Article  PubMed  Google Scholar 

  243. Sun Y, Pham AN, Waite TD (2016) Elucidation of the interplay between Fe(II), Fe(III), and dopamine with relevance to iron solubilization and reactive oxygen species generation by catecholamines. J Neurochem 137(6):955–968. https://doi.org/10.1111/jnc.13615

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  244. Tai Y, Chen L, Huang E, Liu C, Yang X, Qiu P, Wang H (2014) Protective effect of alpha-synuclein knockdown on methamphetamine-induced neurotoxicity in dopaminergic neurons. Neural Regen Res 9(9):951–958. https://doi.org/10.4103/1673-5374.133146

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  245. Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M, Marras C, Bhudhikanok GS, Kasten M, Chade AR, Comyns K, Richards MB, Meng C, Priestley B, Fernandez HH, Cambi F, Umbach DM, Blair A, Sandler DP, Langston JW (2011) Rotenone, paraquat, and Parkinson’s disease. Environ Health Perspect 119(6):866–872. https://doi.org/10.1289/ehp.1002839

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  246. Tatton NA (2000) Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp Neurol 166(1):29–43. https://doi.org/10.1006/exnr.2000.7489

    CAS  Article  PubMed  Google Scholar 

  247. Tatton NA, Maclean-Fraser A, Tatton WG, Perl DP, Olanow CW (1998) A fluorescent double-labeling method to detect and confirm apoptotic nuclei in Parkinson’s disease. Ann Neurol 44(3 Suppl 1):S142–S148. https://doi.org/10.1002/ana.410440721

    CAS  Article  PubMed  Google Scholar 

  248. Taylor JM, Main BS, Crack PJ (2013) Neuroinflammation and oxidative stress: co-conspirators in the pathology of Parkinson’s disease. Neurochem Int 62(5):803–819. https://doi.org/10.1016/j.neuint.2012.12.016

    CAS  Article  PubMed  Google Scholar 

  249. Teodorof-Diedrich C, Spector SA (2020) Human Immunodeficiency Virus Type 1 and Methamphetamine-Mediated mitochondrial damage and neuronal degeneration in human neurons. J Virol 94(20):e00924–e00920. https://doi.org/10.1128/JVI.00924-20

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  250. Theocharopoulou G (2020) The ubiquitous role of mitochondria in Parkinson and other neurodegenerative diseases. AIMS Neurosci 7(1):43–65. https://doi.org/10.3934/Neuroscience.2020004

    Article  PubMed  PubMed Central  Google Scholar 

  251. Theodore S, Stolberg S, Cass WA, Maragos WF (2006) Human immunodeficiency virus-1 protein tat and methamphetamine interactions. Ann N Y Acad Sci 1074:178–190. https://doi.org/10.1196/annals.1369.018

    CAS  Article  PubMed  Google Scholar 

  252. Thomas DM, Walker PD, Benjamins JA, Geddes TJ, Kuhn DM (2004) Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation. J Pharmacol Exp Ther 311:1–7. https://doi.org/10.1124/jpet.104.070961

    CAS  Article  PubMed  Google Scholar 

  253. Thrash B, Karuppagounder SS, Uthayathas S, Suppiramaniam V, Dhanasekaran M (2010) Neurotoxic effects of methamphetamine. Neurochem Res 35:171–179. https://doi.org/10.1007/s11064-009-0042-5

    CAS  Article  PubMed  Google Scholar 

  254. Thrash-Williams B, Karuppagounder SS, Bhattacharya D, Ahuja M, Suppiramaniam V, Dhanasekaran M (2016) Methamphetamine-induced dopaminergic toxicity prevented owing to the neuroprotective effects of salicylic acid. Life Sci 154:24–29. https://doi.org/10.1016/j.lfs.2016.02.072

    CAS  Article  PubMed  Google Scholar 

  255. Tian C, Murrin LC, Zheng JC (2009) Mitochondrial fragmentation is involved in methamphetamine-induced cell death in rat hippocampal neural progenitor cells. PLoS One 4(5):e5546. https://doi.org/10.1371/journal.pone.0005546

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  256. Truong JG, Wilkins DG, Baudys J, Crouch DJ, Johnson-Davis KL, Gibb JW, Hanson GR, Fleckenstein AE (2005) Age-dependent methamphetamine-induced alterations in vesicular monoamine transporter-2 function: implications for neurotoxicity. J Pharmacol Exp Ther 314:1087–1092. https://doi.org/10.1124/jpet.105.085951

    CAS  Article  PubMed  Google Scholar 

  257. Tsuji T, Asanuma M, Miyazaki I, Miyoshi K, Ogawa N (2009) Reduction of nuclear peroxisome proliferator-activated receptor gamma expression in methamphetamine-induced neurotoxicity and neuroprotective effects of ibuprofen. Neurochem Res 34:764–774. https://doi.org/10.1007/s11064-008-9863-x

    CAS  Article  PubMed  Google Scholar 

  258. United Nations Office on Drugs and Crime (2020) World Drug Report 2020. United Nations. https://wdr.unodc.org/wdr2020/field/WDR20_BOOKLET_1.pdf. Accessed 16 Nov 2020

  259. Valian N, Ahmadiani A, Dargahi L (2017) Escalating methamphetamine regimen induces compensatory mechanisms, mitochondrial biogenesis, and GDNF expression, in substantia Nigra. J Cell Biochem 118(6):1369–1378. https://doi.org/10.1002/jcb.25795

    CAS  Article  PubMed  Google Scholar 

  260. Wallace TL, Gudelsky GA, Vorhees CV (1999) Methamphetamine-induced neurotoxicity alters locomotor activity, stereotypic behavior, and stimulated dopamine release in the rat. J Neurosci 19(20):9141–9148. https://doi.org/10.1523/JNEUROSCI.19-20-09141.1999

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  261. Walsh SL, Wagner GC (1992) Motor impairments after methamphetamine-induced neurotoxicity in the rat. J Pharmacol Exp Ther 263(2):617–626

    CAS  PubMed  Google Scholar 

  262. Wang Q, Shin EJ, Nguyen XK, Li Q, Bach JH, Bing G, Kim WK, Kim HC, Hong JS (2012) Endogenous dynorphin protects against neurotoxin-elicited nigrostriatal dopaminergic neuron damage and motor deficits in mice. J Neuroinflammation 9:124. https://doi.org/10.1186/1742-2094-9-124

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  263. Wang J, Qian W, Liu J, Zhao J, Yu P, Jiang L, Zhou J, Gao R, Xiao H (2014) Effect of methamphetamine on the microglial damage: role of potassium channel Kv1.3. PLoS One 9(2):e88642. https://doi.org/10.1371/journal.pone.0088642

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  264. Wang Q, Qian L, Chen SH, Chu CH, Wilson B, Oyarzabal E, Ali S, Robinson B, Rao D, Hong JS (2015) Post-treatment with ultra-low dose of NADPH oxidase inhibitor diphenyleneiodonium attenuates disease progression in multiple Parkinson’s disease models. Brain 138:1247–1262. https://doi.org/10.1093/brain/awv034

    Article  PubMed  PubMed Central  Google Scholar 

  265. Wang L, Wang Z, Xu X, Zhu R, Bi J, Liu W, Feng X, Wu H, Zhang H, Wu J, Kong W, Yu B, Yu X (2017) Recombinant AAV8-mediated intrastriatal gene delivery of CDNF protects rats against methamphetamine neurotoxicity. Int J Med Sci 14(4):340–347. https://doi.org/10.7150/ijms.18623

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  266. Wang B, Chen T, Xue L, Wang J, Jia Y, Li G, Ren H, Wu F, Wu M, Chen Y (2019) Methamphetamine exacerbates neuroinflammatory response to lipopolysaccharide by activating dopamine D1-like receptors. Int Immunopharmacol 73:1–9. https://doi.org/10.1016/j.intimp.2019.04.053

    CAS  Article  PubMed  Google Scholar 

  267. Wen D, An M, Gou H, Liu X, Liu L, Ma C, Cong B (2016) Cholecystokinin-8 inhibits methamphetamine-induced neurotoxicity via an anti-oxidative stress pathway. Neurotoxicology 57:31–38. https://doi.org/10.1016/j.neuro.2016.08.008

    CAS  Article  PubMed  Google Scholar 

  268. Wilson JM, Kalasinsky KS, Levey AI, Bergeron C, Reiber G, Anthony RM, Schmunk GA, Shannak K, Haycock JW, Kish SJ (1996) Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med 2:699–703. https://doi.org/10.1038/nm0696-699

    CAS  Article  PubMed  Google Scholar 

  269. Winklhofer KF, Henn IH, Kay-Jackson PC, Heller U, Tatzelt J (2003) Inactivation of parkin by oxidative stress and C-terminal truncations: a protective role of molecular chaperones. J Biol Chem 278(47):47199–47208. https://doi.org/10.1074/jbc.M306769200

    CAS  Article  PubMed  Google Scholar 

  270. Wu CW, Ping YH, Yen JC, Chang CY, Wang SF, Yeh CL, Chi CW, Lee HC (2007) Enhanced oxidative stress and aberrant mitochondrial biogenesis in human neuroblastoma SHSY5Y cells during methamphetamine induced apoptosis. Toxicol Appl Pharmacol 220:243–251. https://doi.org/10.1016/j.taap.2007.01.011

    CAS  Article  PubMed  Google Scholar 

  271. Xie XL, Zhou WT, Zhang KK, Chen LJ, Wang Q (2018) METH-induced neurotoxicity is alleviated by Lactulose pretreatment through suppressing oxidative stress and Neuroinflammation in Rat Striatum. Front Neurosci 12:802. https://doi.org/10.3389/fnins.2018.00802

    Article  PubMed  PubMed Central  Google Scholar 

  272. Xu X, Huang E, Luo B, Cai D, Zhao X, Luo Q, Jin Y, Chen L, Wang Q, Liu C, Lin Z, Xie WB, Wang H (2018a) Methamphetamine exposure triggers apoptosis and autophagy in neuronal cells by activating the C/EBPβ-related signaling pathway. FASEB J 32:6737–6759. https://doi.org/10.1096/fj.201701460RRR

    CAS  Article  Google Scholar 

  273. Xu E, Liu J, Liu H, Wang X, Xiong H (2018b) Inflammasome activation by methamphetamine potentiates lipopolysaccharide stimulation of IL-1β production in Microglia. J Neuroimmune Pharmacol 13(2):237–253. https://doi.org/10.1007/s11481-018-9780-y

    Article  PubMed  PubMed Central  Google Scholar 

  274. Yan X, Wang B, Hu Y, Wang S, Zhang X (2020) Abnormal mitochondrial quality control in neurodegenerative diseases. Front Cell Neurosci 14:138. https://doi.org/10.3389/fncel.2020.00138

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  275. Yin LH, Shen H, Diaz-Ruiz O, Bäckman CM, Bae E, Yu SJ, Wang Y (2012) Early post-treatment with 9-cis retinoic acid reduces neurodegeneration of dopaminergic neurons in a rat model of Parkinson’s disease. BMC Neurosci 13:120. https://doi.org/10.1186/1471-2202-13-120

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  276. Zafar KS, Inayat-Hussain SH, Ross D (2007) A comparative study of proteasomal inhibition and apoptosis induced in N27 mesencephalic cells by dopamine and MG132. J Neurochem 102(3):913–921. https://doi.org/10.1111/j.1471-4159.2007.04637.x

    CAS  Article  PubMed  Google Scholar 

  277. Zhang L, Kitaichi K, Fujimoto Y, Nakayama H, Shimizu E, Iyo M, Hashimoto K (2006) Protective effects of minocycline on behavioral changes and neurotoxicity in mice after administration of methamphetamine. Prog Neuropsychopharmacol Biol Psychiatry 30:1381–1393. https://doi.org/10.1016/j.pnpbp.2006.05.015

    CAS  Article  PubMed  Google Scholar 

  278. Zhang W, Dallas S, Zhang D, Guo JP, Pang H, Wilson B, Miller DS, Chen B, Zhang W, McGeer PL, Hong JS, Zhang J (2007) Microglial PHOX and Mac-1 are essential to the enhanced dopaminergic neurodegeneration elicited by A30P and A53T mutant alpha synuclein. Glia 55:1178–1188. https://doi.org/10.1002/glia.20532

    Article  PubMed  Google Scholar 

  279. Zhang X, Tobwala S, Ercal N (2012) N-acetylcysteine amide protects against methamphetamine-induced tissue damage in CD-1 mice. Hum Exp Toxicol 31:931–944. https://doi.org/10.1177/0960327112438287

    CAS  Article  PubMed  Google Scholar 

  280. Zhang Z, Liu L, Jiang X, Zhai S, Xing D (2016) The essential role of Drp1 and its regulation by S-Nitrosylation of parkin in dopaminergic neurodegeneration: Implications for Parkinson’s disease. Antioxid Redox Signal 25(11):609–622. https://doi.org/10.1089/ars.2016.6634

    CAS  Article  PubMed  Google Scholar 

  281. Zhang W, Gao JH, Yan ZF, Huang XY, Guo P, Sun L, Liu Z, Hu Y, Zuo LJ, Yu SY, Cao CJ, Wang XM, Hong JS (2018) Minimally Toxic Dose of Lipopolysaccharide and α-Synuclein Oligomer Elicit Synergistic Dopaminergic Neurodegeneration: Role and Mechanism of Microglial NOX2 Activation. Mol Neurobiol 55(1):619–632. https://doi.org/10.1007/s12035-016-0308-2

    CAS  Article  PubMed  Google Scholar 

  282. Zhu JP, Xu W, Angulo JA (2006) Methamphetamine-induced cell death: selective vulnerability in neuronal subpopulations of the striatum in mice. Neuroscience 140:607–622.https://doi.org/10.1016/j.neuroscience.2006.02.055

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant (#19182MFDS410) from the Korea Food and Drug Administration and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (#NRF-2019R1A2C4070161 and #NRF-2019R1I1A3A01063609), Republic of Korea. The English in this document has been checked by a professional English editor (Editage by CACTUS Communications Inc., Seoul, Republic of korea, www.editage.co.kr, https://app.editage.co.kr/orders/download-files/WQQNG_3 and https://app.editage.co.kr/orders/download-files/WQQNG_9).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hyoung-Chun Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shin, EJ., Jeong, J.H., Hwang, Y. et al. Methamphetamine-induced dopaminergic neurotoxicity as a model of Parkinson’s disease. Arch. Pharm. Res. 44, 668–688 (2021). https://doi.org/10.1007/s12272-021-01341-7

Download citation

Keywords

  • Methamphetamine
  • Dopaminergic neurotoxicity
  • Parkinson’s disease
  • Animal model