Skip to main content

Sulforaphane as an anticancer molecule: mechanisms of action, synergistic effects, enhancement of drug safety, and delivery systems

Abstract

Sulforaphane is an isothiocyanate compound that has been derived from cruciferous vegetables. It was shown in numerous studies to be active against multiple cancer types including pancreatic, prostate, breast, lung, cervical, and colorectal cancers. Sulforaphane exerts its therapeutics action by a variety of mechanisms, such as by detoxifying carcinogens and oxidants through blockage of phase I metabolic enzymes, and by arresting cell cycle in the G2/M and G1 phase to inhibit cell proliferation. The most striking observation was the ability of sulforaphane to potentiate the activity of several classes of anticancer agents including paclitaxel, docetaxel, and gemcitabine through additive and synergistic effects. Although a good number of reviews have reported on the mechanisms by which sulforaphane exerts its anticancer activity, a comprehensive review on the synergistic effect of sulforaphane and its delivery strategies is lacking. Therefore, the aim of the current review was to provide a summary of the studies that have been reported on the activity enhancement effect of sulforaphane in combination with other anticancer therapies. Also provided is a summary of the strategies that have been developed for the delivery of sulforaphane.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

(Reproduced from Clarke et al. with permission from Elsevier) HDACi Histone deacetylase inhibition, Chk2 Checkpoint kinase 2, Cdc25C cell division cycle 25 C, AP-1 Activator protein-1, ROS reactive oxygen species, GSH glutathione; Cyt C, cytochrome C,MAPK Mitogen-activated protein kinases, ERK extracellular-signal-regulated kinase, JNK c-Jun N-terminal kinases, NFκB nuclear factor kappa B, IAP inhibitor of apoptosis, PARP poly(ADP-ribose) polymerase

Fig. 4

References

  1. Alumkal JJ, Slottke R, Schwartzman J, Cherala G, Munar M, Graff JN, Beer TM, Ryan CW, Koop DR, Gibbs A, Gao L, Flamiatos JF, Tucker E, Kleinschmidt R, Mori M (2015) A phase II study of sulforaphane-rich broccoli sprout extracts in men with recurrent prostate cancer. Invest New Drugs 33(2):480–489. https://doi.org/10.1007/s10637-014-0189-z

    Article  PubMed  CAS  Google Scholar 

  2. Amjad AI, Parikh RA, Appleman LJ, Hahm ER, Singh K, Singh SV (2015) Broccoli-derived sulforaphane and chemoprevention of prostate cancer: from bench to bedside. Curr Pharmacol Rep 1(6):382–390

    Article  CAS  Google Scholar 

  3. Appari M, Babu KR, Kaczorowski A, Gross W, Herr I (2014) Sulforaphane, quercetin and catechins complement each other in elimination of advanced pancreatic cancer by miR-let-7 induction and K-ras inhibition. Int J Oncol 45(4):1391–1400. https://doi.org/10.3892/ijo.2014.2539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Atwell LL, Beaver LM, Shannon J, Williams DE, Dashwood RH, Ho E (2015a) Epigenetic regulation by sulforaphane: opportunities for breast and prostate cancer chemoprevention. Curr Pharmacol Rep 1(2):102–111. https://doi.org/10.1007/s40495-014-0002-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Atwell LL, Zhang Z, Mori M, Farris P, Vetto JT, Naik AM, Oh KY, Thuillier P, Ho E, Shannon J (2015b) Sulforaphane bioavailability and chemopreventive activity in women scheduled for breast biopsy. Cancer Prev Res (Phila) 8(12):1184–1191

    Article  CAS  Google Scholar 

  6. Aumeeruddy MZ, Mahomoodally MF (2019) Combating breast cancer using combination therapy with 3 phytochemicals: piperine, sulforaphane, and thymoquinone. Cancer 125(10):1600–1611. https://doi.org/10.1002/cncr.32022

    Article  PubMed  Google Scholar 

  7. Brooks JD, Paton VG, Vidanes G (2001) Potent induction of phase 2 enzymes in human prostate cells by sulforaphane. Cancer Epidemiol Biomarkers Prev 10(9):949–954

    PubMed  CAS  Google Scholar 

  8. Burnett JP, Lim G, Li Y, Shah RB, Lim R, Paholak HJ, McDermott SP, Sun L, Tsume Y, Bai S, Wicha MS, Sun D, Zhang T (2017) Sulforaphane enhances the anticancer activity of taxanes against triple negative breast cancer by killing cancer stem cells. Cancer Lett 394:52–64. https://doi.org/10.1016/j.canlet.2017.02.023

    Article  PubMed  CAS  Google Scholar 

  9. Chen CY, Yu ZY, Chuang YS, Huang RM, Wang TC (2015) Sulforaphane attenuates EGFR signaling in NSCLC cells. J Biomed Sci 22:38. https://doi.org/10.1186/s12929-015-0139-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cheung KL, Kong AN (2010) Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention. The AAPS Journal 12(1):87–97. https://doi.org/10.1208/s12248-009-9162-8

    Article  PubMed  CAS  Google Scholar 

  11. Cho SD, Li G, Hu H, Jiang C, Kang KS, Lee YS, Kim SH, Lu J (2005) Involvement of c-Jun N-terminal kinase in G2/M arrest and caspase-mediated apoptosis induced by sulforaphane in DU145 prostate cancer cells. Nutr Cancer 52(2):213–224. https://doi.org/10.1207/s15327914nc5202_11

    Article  PubMed  CAS  Google Scholar 

  12. Choi S, Lew KL, Xiao H, Herman-Antosiewicz A, Xiao D, Brown CK, Singh SV (2007) D,L-Sulforaphane-induced cell death in human prostate cancer cells is regulated by inhibitor of apoptosis family proteins and Apaf-1. Carcinogenesis 28(1):151–162. https://doi.org/10.1093/carcin/bgl144

    Article  PubMed  CAS  Google Scholar 

  13. Cipolla BG, Mandron E, Lefort JM, Coadou Y, Negra ED, Scodan LCL, Mottet N (2014) First double-blind placebo-controlled, multicenter, randomized trial of stabilized natural sulforaphane in men with rising PSA following radical prostatectomy. J Clin Oncol 32:5s. abstr 5032.

  14. Clarke JD, Dashwood RH, Ho E (2008) Multi-targeted prevention of cancer by sulforaphane. Cancer Lett 269(2):291–304. https://doi.org/10.1016/j.canlet.2008.04.018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Cornblatt BS, Ye L, Dinkova-Kostova AT, Erb M, Fahey JW, Singh NK, Chen MS, Stierer T, Garrett-Mayer E, Argani P, Davidson NE, Talalay P, Kensler TW, Visvanathan K (2007) Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis 28(7):1485–1490. https://doi.org/10.1093/carcin/bgm049

    Article  PubMed  CAS  Google Scholar 

  16. Danafar H, Sharafi A, Askarlou S, Manjili HK (2017a) Preparation and characterization of pegylated iron oxide-gold nanoparticles for delivery of sulforaphane and curcumin. Drug Res (Stuttg) 67(12):698–704. https://doi.org/10.1055/s-0043-115905

    Article  CAS  Google Scholar 

  17. Danafar H, Sharafi A, Manjili HK, Andalib S (2017b) Sulforaphane delivery using mPEG-PCL co-polymer nanoparticles to breast cancer cells. Pharm Dev Technol 22(5):642–651. https://doi.org/10.3109/10837450.2016.1146296

    Article  PubMed  CAS  Google Scholar 

  18. Desai P, Thakkar A, Ann D, Wang J, Prabhu S (2019) Loratadine self-microemulsifying drug delivery systems (SMEDDS) in combination with sulforaphane for the synergistic chemoprevention of pancreatic cancer. Drug Deliv Transl Res 9(3):641–651. https://doi.org/10.1007/s13346-019-00619-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Desale SS, Soni KS, Romanova S, Cohen SM, Bronich TK (2015) Targeted delivery of platinum-taxane combination therapy in ovarian cancer. J Control Release 220(Pt B):651–659. https://doi.org/10.1016/j.jconrel.2015.09.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Do DP, Pai SB, Rizvi SA, D'Souza MJ (2010) Development of sulforaphane-encapsulated microspheres for cancer epigenetic therapy. Int J Pharm 386(1–2):114–121. https://doi.org/10.1016/j.ijpharm.2009.11.009

    Article  PubMed  CAS  Google Scholar 

  21. Doudican NA, Wen SY, Mazumder A, Orlow SJ (2012) Sulforaphane synergistically enhances the cytotoxicity of arsenic trioxide in multiple myeloma cells via stress-mediated pathways. Oncol Rep 28(5):1851–1858. https://doi.org/10.3892/or.2012.1977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Enriquez GG, Rizvi SAA, D’Souza MJ, Do DP (2013) Formulation and evaluation of drug-loaded targeted magnetic microspheres for cancer therapy. Int J Nanomedicine 8:1393–1402. https://doi.org/10.2147/IJN.S43479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Fahey JW, Talalay P (1999) Antioxidant functions of sulforaphane: a potent inducer of Phase II detoxication enzymes. Food Chem Toxicol 37(9–10):973–979

    Article  CAS  Google Scholar 

  24. Fahey JW, Wade KL, Wehage SL, Holtzclaw WD, Liu H, Talalay P, Fuchs E, Stephenson KK (2017) Stabilized sulforaphane for clinical use: Phytochemical delivery efficiency. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201600766

    Article  PubMed  Google Scholar 

  25. Fimognari C, Hrelia P (2007) Sulforaphane as a promising molecule for fighting cancer. Mutat Res 635(2–3):90–104. https://doi.org/10.1016/j.mrrev.2006.10.004

    Article  PubMed  CAS  Google Scholar 

  26. Fimognari C, Nusse M, Berti F, Iori R, Cantelli-Forti G, Hrelia P (2002) Cyclin D3 and p53 mediate sulforaphane-induced cell cycle delay and apoptosis in non-transformed human T lymphocytes. Cell Mol Life Sci 59(11):2004–2012

    Article  CAS  Google Scholar 

  27. Franklin SJ, Dickinson SE, Karlage KL, Bowden GT, Myrdal PB (2014) Stability of sulforaphane for topical formulation. Drug Dev Ind Pharm 40(4):494–502. https://doi.org/10.3109/03639045.2013.768634

    Article  PubMed  CAS  Google Scholar 

  28. Gamet-Payrastre L, Li P, Lumeau S, Cassar G, Dupont MA, Chevolleau S, Gasc N, Tulliez J, Terce F (2000) Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res 60(5):1426–1433

    PubMed  CAS  Google Scholar 

  29. Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627. https://doi.org/10.1146/annurev.med.53.082901.103929

    Article  PubMed  CAS  Google Scholar 

  30. Grandhi BK, Thakkar A, Wang J, Prabhu S (2013) A novel combinatorial nanotechnology-based oral chemopreventive regimen demonstrates significant suppression of pancreatic cancer neoplastic lesions. Cancer Prev Res (Phila) 6(10):1015–1025. https://doi.org/10.1158/1940-6207.capr-13-0172

    Article  CAS  Google Scholar 

  31. He C, Lu J, Lin W (2015) Hybrid nanoparticles for combination therapy of cancer. J Control Release 219:224–236. https://doi.org/10.1016/j.jconrel.2015.09.029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Hussain A, Mohsin J, Prabhu SA, Begum S, Nusri QA, Harish G, Javed E, Khan MA, Sharma C (2013) Sulforaphane inhibits growth of human breast cancer cells and augments the therapeutic index of the chemotherapeutic drug, gemcitabine. Asian Pac J Cancer Prev 14(10):5855–5860

    Article  Google Scholar 

  33. Hussain A, Priyani A, Sadrieh L, Brahmbhatt K, Ahmed M, Sharma C (2012) Concurrent sulforaphane and eugenol induces differential effects on human cervical cancer cells. Integr Cancer Ther 11(2):154–165. https://doi.org/10.1177/1534735411400313

    Article  PubMed  CAS  Google Scholar 

  34. Jia J, Zhu F, Ma X, Cao Z, Cao ZW, Li Y, Li YX, Chen YZ (2009) Mechanisms of drug combinations: interaction and network perspectives. Nat Rev Drug Discov 8(2):111–128. https://doi.org/10.1038/nrd2683

    Article  PubMed  CAS  Google Scholar 

  35. Jiang H, Shang X, Wu H, Huang G, Wang Y, Al-Holou S, Gautam SC, Chopp M (2010) Combination treatment with resveratrol and sulforaphane induces apoptosis in human U251 glioma cells. Neurochem Res 35(1):152–161. https://doi.org/10.1007/s11064-009-0040-7

    Article  PubMed  CAS  Google Scholar 

  36. Jin Y, Wang M, Rosen RT, Ho CT (1999) Thermal degradation of sulforaphane in aqueous solution. J Agric Food Chem 47(8):3121–3123

    Article  CAS  Google Scholar 

  37. Jo GH, Kim GY, Kim WJ, Park KY, Choi YH (2014) Sulforaphane induces apoptosis in T24 human urinary bladder cancer cells through a reactive oxygen species-mediated mitochondrial pathway: the involvement of endoplasmic reticulum stress and the Nrf2 signaling pathway. Int J Oncol 45(4):1497–1506. https://doi.org/10.3892/ijo.2014.2536

    Article  PubMed  CAS  Google Scholar 

  38. Juge N, Mithen RF, Traka M (2007) Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci 64(9):1105–1127. https://doi.org/10.1007/s00018-007-6484-5

    Article  PubMed  CAS  Google Scholar 

  39. Kaczynska A, Swierczynska J, Herman-Antosiewicz A (2015) Sensitization of HER2 Positive Breast Cancer Cells to Lapatinib Using Plants-Derived Isothiocyanates. Nutr Cancer 67(6):976–986. https://doi.org/10.1080/01635581.2015.1053498

    Article  PubMed  CAS  Google Scholar 

  40. Kallifatidis G, Labsch S, Rausch V, Mattern J, Gladkich J, Moldenhauer G, Büchler MW, Salnikov AV, Herr I (2011) Sulforaphane increases drug-mediated cytotoxicity toward cancer stem-like cells of pancreas and prostate. Mol Ther 19(1):188–195. https://doi.org/10.1038/mt.2010.216

    Article  PubMed  CAS  Google Scholar 

  41. Kallifatidis G, Rausch V, Baumann B, Apel A, Beckermann BM, Groth A, Mattern J, Li Z, Kolb A, Moldenhauer G, Altevogt P, Wirth T, Werner J, Schemmer P, Büchler MW, Salnikov AV, Herr I (2009) Sulforaphane targets pancreatic tumour-initiating cells by NF-kappaB-induced antiapoptotic signalling. Gut 58(7):949–963. https://doi.org/10.1136/gut.2008.149039

    Article  PubMed  CAS  Google Scholar 

  42. Kamal MM, Nazzal S (2018a) Development of a new class of sulforaphane-enabled self-emulsifying drug delivery systems (SFN-SEDDS) by high throughput screening: a case study with curcumin. Int J Pharm 539(1–2):147–156. https://doi.org/10.1016/j.ijpharm.2018.01.045

    Article  PubMed  CAS  Google Scholar 

  43. Kamal MM, Nazzal S (2018b) Novel sulforaphane-enabled self-microemulsifying delivery systems (SFN-SMEDDS) of taxanes: formulation development and in vitro cytotoxicity against breast cancer cells. Int J Pharm 536(1):187–198. https://doi.org/10.1016/j.ijpharm.2017.11.063

    Article  PubMed  CAS  Google Scholar 

  44. Kaminski BM, Weigert A, Brune B, Schumacher M, Wenzel U, Steinhilber D, Stein J, Ulrich S (2011) Sulforaphane potentiates oxaliplatin-induced cell growth inhibition in colorectal cancer cells via induction of different modes of cell death. Cancer Chemother Pharmacol 67(5):1167–1178. https://doi.org/10.1007/s00280-010-1413-y

    Article  PubMed  CAS  Google Scholar 

  45. Karmakar S, Weinberg MS, Banik NL, Patel SJ, Ray SK (2006) Activation of multiple molecular mechanisms for apoptosis in human malignant glioblastoma T98G and U87MG cells treated with sulforaphane. Neuroscience 141(3):1265–1280. https://doi.org/10.1016/j.neuroscience.2006.04.075

    Article  PubMed  CAS  Google Scholar 

  46. Kerr C, Adhikary G, Grun D, George N, Eckert RL (2018) Combination cisplatin and sulforaphane treatment reduces proliferation, invasion, and tumor formation in epidermal squamous cell carcinoma. Mol Carcinog 57(1):3–11. https://doi.org/10.1002/mc.22714

    Article  PubMed  CAS  Google Scholar 

  47. Keum YS, Jeong WS, Kong AN (2004) Chemoprevention by isothiocyanates and their underlying molecular signaling mechanisms. Mutat Res 555(1–2):191–202. https://doi.org/10.1016/j.mrfmmm.2004.05.024

    Article  PubMed  CAS  Google Scholar 

  48. Kim BR, Hu R, Keum YS, Hebbar V, Shen G, Nair SS, Kong AN (2003) Effects of glutathione on antioxidant response element-mediated gene expression and apoptosis elicited by sulforaphane. Cancer Res 63(21):7520–7525

    PubMed  CAS  Google Scholar 

  49. Ko JY, Choi YJ, Jeong GJ, Im GI (2013) Sulforaphane-PLGA microspheres for the intra-articular treatment of osteoarthritis. Biomaterials 34(21):5359–5368. https://doi.org/10.1016/j.biomaterials.2013.03.066

    Article  PubMed  CAS  Google Scholar 

  50. Kong AN, Owuor E, Yu R, Hebbar V, Chen C, Hu R, Mandlekar S (2001) Induction of xenobiotic enzymes by the MAP kinase pathway and the antioxidant or electrophile response element (ARE/EpRE). Drug Metab Rev 33(3–4):255–271. https://doi.org/10.1081/dmr-120000652

    Article  PubMed  CAS  Google Scholar 

  51. Labsch S, Liu L, Bauer N, Zhang Y, Aleksandrowicz E, Gladkich J, Schönsiegel F, Herr I (2014) Sulforaphane and TRAIL induce a synergistic elimination of advanced prostate cancer stem-like cells. Int J Oncol 44(5):1470–1480. https://doi.org/10.3892/ijo.2014.2335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Lan F, Pan Q, Yu H, Yue X (2015) Sulforaphane enhances temozolomide-induced apoptosis because of down-regulation of miR-21 via Wnt/beta-catenin signaling in glioblastoma. J Neurochem 134(5):811–818. https://doi.org/10.1111/jnc.13174

    Article  PubMed  CAS  Google Scholar 

  53. Liang J, Hänsch GM, Hübner K, Samstag Y (2019) Sulforaphane as anticancer agent: a double-edged sword? Tricky balance between effects on tumor cells and immune cells. Adv Biol Regul 71:79–87. https://doi.org/10.1016/j.jbior.2018.11.006

    Article  PubMed  CAS  Google Scholar 

  54. Li B, Kim DS, Yadav RK, Kim HR, Chae HJ (2015) Sulforaphane prevents doxorubicin-induced oxidative stress and cell death in rat H9c2 cells. Int J Mol Med 36(1):53–64. https://doi.org/10.3892/ijmm.2015.2199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Li SH, Fu J, Watkins DN, Srivastava RK, Shankar S (2013) Sulforaphane regulates self-renewal of pancreatic cancer stem cells through the modulation of Sonic hedgehog-GLI pathway. Mol Cell Biochem 373(1–2):217–227. https://doi.org/10.1007/s11010-012-1493-6

    Article  PubMed  CAS  Google Scholar 

  56. Li Y, Zhang T, Schwartz SJ, Sun D (2011) Sulforaphane potentiates the efficacy of 17-allylamino 17-demethoxygeldanamycin against pancreatic cancer through enhanced abrogation of Hsp90 chaperone function. Nutr Cancer 63(7):1151–1159. https://doi.org/10.1080/01635581.2011.596645

    Article  PubMed  CAS  Google Scholar 

  57. Lubecka-Pietruszewska K, Kaufman-Szymczyk A, Stefanska B, Cebula-Obrzut B, Smolewski P, Fabianowska-Majewska K (2015) Sulforaphane alone and in combination with clofarabine epigenetically regulates the expression of DNA methylation-silenced tumour suppressor genes in human breast cancer cells. J Nutrigenet Nutrigenomics 8(2):91–101. https://doi.org/10.1159/000439111

    Article  PubMed  CAS  Google Scholar 

  58. Maheo K, Morel F, Langouet S, Kramer H, Le FE, Ketterer B, Guillouzo A (1997) Inhibition of cytochromes P-450 and induction of glutathione S-transferases by sulforaphane in primary human and rat hepatocytes. Cancer Res 57(17):3649–3652

    PubMed  CAS  Google Scholar 

  59. Manjili HK, Ma'mani L, Tavaddod S, Mashhadikhan M, Shafiee A, Naderi-Manesh H (2016) D, L-sulforaphane loaded Fe3O4@ gold core shell nanoparticles: a potential sulforaphane delivery system. PLoS ONE 11(3):e0151344. https://doi.org/10.1371/journal.pone.0151344

    Article  CAS  Google Scholar 

  60. Manjili HK, Sharafi A, Attari E, Danafar H (2017) Pharmacokinetics and in vitro and in vivo delivery of sulforaphane by PCL-PEG-PCL copolymeric-based micelles. Artif Cells Nanomed Biotechnol 45(8):1728–1739. https://doi.org/10.1080/21691401.2017.1282501

    Article  CAS  Google Scholar 

  61. Mielczarek L, Krug P, Mazur M, Milczarek M, Chilmonczyk Z, Wiktorska K (2019) In the triple-negative breast cancer MDA-MB-231 cell line, sulforaphane enhances the intracellular accumulation and anticancer action of doxorubicin encapsulated in liposomes. Int J Pharm 558:311–318. https://doi.org/10.1016/j.ijpharm.2019.01.008

    Article  PubMed  CAS  Google Scholar 

  62. Milczarek M, Mielczarek L, Lubelska K, Dąbrowska A, Chilmonczyk Z, Matosiuk D, Wiktorska K (2018) In vitro evaluation of sulforaphane and a natural analog as potent inducers of 5-fluorouracil anticancer activity. Molecules. https://doi.org/10.3390/molecules23113040

    Article  PubMed  PubMed Central  Google Scholar 

  63. Moriarty RM, Naithani R, Kosmeder J, Prakash O (2006) Cancer chemopreventive activity of sulforamate derivatives. Eur J Med Chem 41(1):121–124. https://doi.org/10.1016/j.ejmech.2005.10.002

    Article  PubMed  CAS  Google Scholar 

  64. Myzak MC, Dashwood RH (2006) Chemoprotection by sulforaphane: Keep one eye beyond Keap1. Cancer Lett 233(2):208–218. https://doi.org/10.1016/j.canlet.2005.02.033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Nair S, Hebbar V, Shen G, Gopalakrishnan A, Khor TO, Yu S, Xu C, Kong AN (2008) Synergistic effects of a combination of dietary factors sulforaphane and (−) epigallocatechin-3-gallate in HT-29 AP-1 human colon carcinoma cells. Pharm Res 25(2):387–399. https://doi.org/10.1007/s11095-007-9364-7

    Article  PubMed  CAS  Google Scholar 

  66. Nakagawa K, Umeda T, Higuchi O, Tsuzuki T, Suzuki T, Miyazawa T (2006) Evaporative light-scattering analysis of sulforaphane in broccoli samples: quality of broccoli products regarding sulforaphane contents. J Agric Food Chem 54(7):2479–2483. https://doi.org/10.1021/jf051823g

    Article  PubMed  CAS  Google Scholar 

  67. Olempska M, Eisenach PA, Ammerpohl O, Ungefroren H, Fandrich F, Kalthoff H (2007) Detection of tumor stem cell markers in pancreatic carcinoma cell lines. Hepatobiliary Pancreat Dis Int 6(1):92–97

    PubMed  CAS  Google Scholar 

  68. Pappa G, Strathmann J, Lowinger M, Bartsch H, Gerhauser C (2007) Quantitative combination effects between sulforaphane and 3,3'-diindolylmethane on proliferation of human colon cancer cells in vitro. Carcinogenesis 28(7):1471–1477. https://doi.org/10.1093/carcin/bgm044

    Article  PubMed  CAS  Google Scholar 

  69. Paul B, Li Y, Tollefsbol TO (2018) The Effects of Combinatorial Genistein and Sulforaphane in Breast Tumor Inhibition: Role in Epigenetic Regulation. Int J Mol Sci. https://doi.org/10.3390/ijms19061754

    Article  PubMed  PubMed Central  Google Scholar 

  70. Pawlik A, Slominska-Wojewodzka M, Herman-Antosiewicz A (2016) Sensitization of estrogen receptor-positive breast cancer cell lines to 4-hydroxytamoxifen by isothiocyanates present in cruciferous plants. Eur J Nutr 55(3):1165–1180. https://doi.org/10.1007/s00394-015-0930-1

    Article  PubMed  CAS  Google Scholar 

  71. Posner GH, Cho CG, Green JV, Zhang Y, Talalay P (1994) Design and synthesis of bifunctional isothiocyanate analogs of sulforaphane: correlation between structure and potency as inducers of anticarcinogenic detoxication enzymes. J Med Chem 37(1):170–176

    Article  CAS  Google Scholar 

  72. Pradhan SJ, Mishra R, Sharma P, Kundu GC (2010) Quercetin and sulforaphane in combination suppress the progression of melanoma through the down-regulation of matrix metalloproteinase-9. Exp Ther Med 1(6):915–920. https://doi.org/10.3892/etm.2010.144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Prochaska HJ, Santamaria AB, Talalay P (1992) Rapid detection of inducers of enzymes that protect against carcinogens. Proc Natl Acad Sci USA 89(6):2394–2398

    Article  CAS  Google Scholar 

  74. Rakariyatham K, Yang X, Gao Z, Song M, Han Y, Chen X, Xiao H (2019) Synergistic chemopreventive effect of allyl isothiocyanate and sulforaphane on non-small cell lung carcinoma cells. Food Funct 10(2):893–902. https://doi.org/10.1039/c8fo01914b

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Rausch V, Liu L, Kallifatidis G, Baumann B, Mattern J, Gladkich J, Wirth T, Schemmer P, Büchler MW, Zöller M, Salnikov AV, Herr I (2010) Synergistic activity of sorafenib and sulforaphane abolishes pancreatic cancer stem cell characteristics. Cancer Res 70(12):5004–5013. https://doi.org/10.1158/0008-5472.can-10-0066

    Article  PubMed  CAS  Google Scholar 

  76. Royston KJ, Paul B, Nozell S, Rajbhandari R, Tollefsbol TO (2018) Withaferin A and sulforaphane regulate breast cancer cell cycle progression through epigenetic mechanisms. Exp Cell Res 368(1):67–74. https://doi.org/10.1016/j.yexcr.2018.04.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Sestili P, Fimognari C (2015) Cytotoxic and antitumor activity of sulforaphane: the role of reactive oxygen species. BioMed Res Int 2015:402386. https://doi.org/10.1155/2015/402386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Sharma C, Sadrieh L, Priyani A, Ahmed M, Hassan AH, Hussain A (2011) Anti-carcinogenic effects of sulforaphane in association with its apoptosis-inducing and anti-inflammatory properties in human cervical cancer cells. Cancer Epidemiol 35(3):272–278. https://doi.org/10.1016/j.canep.2010.09.008

    Article  PubMed  CAS  Google Scholar 

  79. Shen G, Khor TO, Hu R, Yu S, Nair S, Ho CT, Reddy BS, Huang MT, Newmark HL, Kong AN (2007) Chemoprevention of familial adenomatous polyposis by natural dietary compounds sulforaphane and dibenzoylmethane alone and in combination in ApcMin/+. Cancer Res 67(20):9937–9944

    Article  CAS  Google Scholar 

  80. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics 2018. CA Cancer J Clin 68(1):7–30. https://doi.org/10.3322/caac.21442

    Article  Google Scholar 

  81. Singh P, Sharma R, McElhanon K, Allen CD, Megyesi JK, Benes H, Singh SP (2015) Sulforaphane protects the heart from doxorubicin-induced toxicity. Free Radic Biol Med 86:90–101. https://doi.org/10.1016/j.freeradbiomed.2015.05.028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Singh SV, Srivastava SK, Choi S, Lew KL, Antosiewicz J, Xiao D, Zeng Y, Watkins SC, Johnson CS, Trump DL, Lee YJ, Xiao H, Herman-Antosiewicz A (2005) Sulforaphane-induced cell death in human prostate cancer cells is initiated by reactive oxygen species. J Biol Chem 280(20):19911–19924. https://doi.org/10.1074/jbc.M412443200

    Article  PubMed  CAS  Google Scholar 

  83. Soni K, Rizwanullah M, Kohli K (2018) Development and optimization of sulforaphane-loaded nanostructured lipid carriers by the Box-Behnken design for improved oral efficacy against cancer: in vitro, ex vivo and in vivo assessments. Artif Cells Nanomed Biotechnol 46:15–31. https://doi.org/10.1080/21691401.2017.1408124

    Article  PubMed  CAS  Google Scholar 

  84. Su X, Jiang X, Meng L, Dong X, Shen Y, Xin Y (2018) Anticancer activity of sulforaphane: the epigenetic mechanisms and the Nrf2 signaling pathway. Oxid Med Cell Longev 2018:5438179. https://doi.org/10.1155/2018/5438179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Sutaria D, Grandhi BK, Thakkar A, Wang J, Prabhu S (2012) Chemoprevention of pancreatic cancer using solid-lipid nanoparticulate delivery of a novel aspirin, curcumin and sulforaphane drug combination regimen. Int J Oncol 41(6):2260–2268. https://doi.org/10.3892/ijo.2012.1636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Talalay P (2000) Chemoprotection against cancer by induction of phase 2 enzymes. BioFactors 12(1–4):5–11

    Article  CAS  Google Scholar 

  87. Thakkar A, Chenreddy S, Wang J, Prabhu S (2015) Evaluation of ibuprofen loaded solid lipid nanoparticles and its combination regimens for pancreatic cancer chemoprevention. Int J Oncol 46(4):1827–1834. https://doi.org/10.3892/ijo.2015.2879

    Article  PubMed  CAS  Google Scholar 

  88. Tian G, Li Y, Yuan Q, Cheng L, Kuang P, Tang P (2015) The stability and degradation kinetics of Sulforaphene in microcapsules based on several biopolymers via spray drying. Carbohydr Polym 122:5–10. https://doi.org/10.1016/j.carbpol.2015.01.003

    Article  PubMed  CAS  Google Scholar 

  89. Wang F, Wang W, Li J, Zhang J, Wang X, Wang M (2018) Sulforaphane reverses gefitinib tolerance in human lung cancer cells via modulation of sonic hedgehog signaling. Oncol Lett 15(1):109–114. https://doi.org/10.3892/ol.2017.7293

    Article  PubMed  CAS  Google Scholar 

  90. Wang H, Liang H, Yuan QP, Wang TX (2011) A novel pH-sensitive microsphere composed of CM-chitosan and alginate for sulforaphane delivery. Mater Sci Forum 687:539–547. https://doi.org/10.4028/www.scientific.net/MSF.687.539

    Article  CAS  Google Scholar 

  91. Wang M, Chen S, Wang S, Sun D, Chen J, Li Y, Han W, Yang X, Gao HQ (2012) Effects of phytochemicals sulforaphane on uridine diphosphate-glucuronosyltransferase expression as well as cell-cycle arrest and apoptosis in human colon cancer Caco-2 cells. Chin J Physiol 55(2):134–144. https://doi.org/10.4077/cjp.2012.baa085

    Article  PubMed  CAS  Google Scholar 

  92. Wang XF, Wu DM, Li BX, Lu YJ, Yang BF (2009) Synergistic inhibitory effect of sulforaphane and 5-fluorouracil in high and low metastasis cell lines of salivary gland adenoid cystic carcinoma. Phytother Res 23(3):303–307. https://doi.org/10.1002/ptr.2618

    Article  PubMed  CAS  Google Scholar 

  93. Wang Y, Dacosta C, Wang W, Zhou Z, Liu M, Bao Y (2015) Synergy between sulforaphane and selenium in protection against oxidative damage in colonic CCD841 cells. Nutr Res 35(7):610–617. https://doi.org/10.1016/j.nutres.2015.05.011

    Article  PubMed  CAS  Google Scholar 

  94. Wiczk A, Hofman D, Konopa G (1823) Herman-Antosiewicz A (2012) Sulforaphane, a cruciferous vegetable-derived isothiocyanate, inhibits protein synthesis in human prostate cancer cells. Biochim Biophys Acta 8:1295–1305. https://doi.org/10.1016/j.bbamcr.2012.05.020

    Article  CAS  Google Scholar 

  95. Wu H, Liang H, Yuan Q, Wang T, Yan X (2010) Preparation and stability investigation of the inclusion complex of sulforaphane with hydroxypropyl-β-cyclodextrin. Carbohydr Polym 82(3):613–617. https://doi.org/10.1016/j.carbpol.2010.05.020

    Article  CAS  Google Scholar 

  96. Wu Y, Mao J, You Y, Liu S (2014a) Study on degradation kinetics of sulforaphane in broccoli extract. Food Chem 155:235–239. https://doi.org/10.1016/j.foodchem.2014.01.042

    Article  PubMed  CAS  Google Scholar 

  97. Wu Y, Zou L, Mao J, Huang J, Liu S (2014b) Stability and encapsulation efficiency of sulforaphane microencapsulated by spray drying. Carbohydr Polym 102:497–503. https://doi.org/10.1016/j.carbpol.2013.11.057

    Article  PubMed  CAS  Google Scholar 

  98. Yagishita Y, Fahey JW, Dinkova-Kostova AT, Kensler TW (2019) Broccoli or sulforaphane: is it the source or dose that matters? Molecules. https://doi.org/10.3390/molecules24193593

    Article  PubMed  PubMed Central  Google Scholar 

  99. Yamada R, Suda H, Sadanari H, Matsubara K, Tuchida Y, Murayama T (2016) Synergistic effects by combination of ganciclovir and tricin on human cytomegalovirus replication in vitro. Antiviral Res 125:79–83. https://doi.org/10.1016/j.antiviral.2015.11.008

    Article  PubMed  CAS  Google Scholar 

  100. Yang CS, Smith TJ, Hong JY (1986s) Cytochrome P-450 enzymes as targets for chemoprevention against chemical carcinogenesis and toxicity: opportunities and limitations. Cancer Res 54(7):1982s–1986s

    PubMed  CAS  Google Scholar 

  101. Yoxall V, Kentish P, Coldham N, Kuhnert N, Sauer MJ, Ioannides C (2005) Modulation of hepatic cytochromes P450 and phase II enzymes by dietary doses of sulforaphane in rats: implications for its chemopreventive activity. Int J Cancer 117(3):356–362. https://doi.org/10.1002/ijc.21191

    Article  PubMed  CAS  Google Scholar 

  102. Zhang Y, Talalay P, Cho CG, Posner GH (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci USA 89(6):2399–2403

    Article  CAS  Google Scholar 

  103. Zhang Y, Tang L (2007) Discovery and development of sulforaphane as a cancer chemopreventive phytochemical. Acta Pharmacol Sin 28(9):1343–1354. https://doi.org/10.1111/j.1745-7254.2007.00679.x

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sami Nazzal.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kamal, M.M., Akter, S., Lin, CN. et al. Sulforaphane as an anticancer molecule: mechanisms of action, synergistic effects, enhancement of drug safety, and delivery systems. Arch. Pharm. Res. 43, 371–384 (2020). https://doi.org/10.1007/s12272-020-01225-2

Download citation

Keywords

  • Cancer
  • Drug delivery systems
  • Sulforaphane
  • Combination therapy
  • Synergism
  • Isothiocyanates