Nanoconfinement-mediated cancer theranostics

Abstract

Despite various therapeutic or diagnostic developments, cancer is still one of the most lethal diseases due to insufficiently adequate treatments and the delay of the early stage of disease detection. An image-guided drug delivery system (IGDDS), as a real-time noninvasive imaging assessment of therapeutic response, has the strong potential to improve the diagnosis and treatment of cancer because its imaging property offers the quantification of nanomedicine at the intended disease sites, the possible assurance of adequate treatment and elimination of undesirable delay of early-stage diagnosis due to low resolution. One of potential modality that overcomes these challenges could be the nanoconfinement of gold (Au) nanoparticles within other nanoparticles called "Particle-in-Particle (PIP)", which is a strong candidate of cancer treatment because of its "theranostic (therapy + diagnostics)" advantages including imaging (e.g., CT) and therapeutic hyperthermia application. In this review, we will elaborate on the current application of theranostic by nanoconfinement. Then, we will narrow down the gold nanoparticle-mediated theranostic application and its nanoconfinement advantages. Finally, the future direction for maximum nanoconfinement mediated cancer therapy will be included.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ardana A, Whittaker AK, Thurecht KJ (2014) PEG-based hyperbranched polymer theranostics: optimizing chemistries for improved bioconjugation. Macromolecules 47:5211–5219. https://doi.org/10.1021/ma501196h

    CAS  Article  Google Scholar 

  2. Artzi N, Oliva N, Puron C, Shitreet S, Artzi S, Bon Ramos A, Groothuis A, Sahagian G, Edelman ER (2011) In vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging. Nat Mater 10:890. https://doi.org/10.1038/nmat3095

    CAS  Article  Google Scholar 

  3. Aydogan B, Li J, Rajh T, Chaudhary A, Chmura SJ, Pelizzari C, Wietholt C, Kurtoglu M, Redmond P (2010) AuNP-DG: deoxyglucose-labeled gold nanoparticles as X-ray computed tomography contrast agents for cancer imaging. Mol Imag Biol 12:463–467. https://doi.org/10.1007/s11307-010-0299-8

    Article  Google Scholar 

  4. Bernardy N, Romio AP, Barcelos EI, Pizzol CD, Dora CL, Lemos-Senna E, Araujo PH, Sayer C (2010) Nanoencapsulation of quercetin via miniemulsion polymerization. J Biomed Nanotechnol 6:181–186. https://doi.org/10.1166/jbn.2010.1107

    CAS  Article  PubMed  Google Scholar 

  5. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782. https://doi.org/10.1039/B806051G

    CAS  Article  PubMed  Google Scholar 

  6. Cademartiri F, Palumbo AA, Maffei E (2007) Non invasive imaging of coronary arteries with 64-slice CT and 1.5 T MRI: challenging invasive techniques. Acta Bio Med Atenei Parmensis 78:6–15

    Google Scholar 

  7. Chen H, Niu G, Wu H, Chen X (2016) Clinical application of radiolabeled RGD peptides for PET imaging of integrin αvβ3. Theranostics 6:78. https://doi.org/10.7150/thno.13242

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Cheng LK, Sands G, French R, Withy S, Wong S, Legget M, Smith W, Pullan AJ (2005) Rapid construction of a patient-specific torso model from 3D ultrasound for non-invasive imaging of cardiac electrophysiology. Med Biol Eng Compu 43:325–330. https://doi.org/10.1007/BF02345808

    CAS  Article  PubMed  Google Scholar 

  9. Cherry SR (2009) Multimodality imaging: beyond pet/ct and spect/ct. Semin Nucl Med 39:348–353. https://doi.org/10.1053/j.semnuclmed.2009.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668. https://doi.org/10.1021/nl052396o

    CAS  Article  PubMed  Google Scholar 

  11. Cipolla D, Wu H, Salentinig S, Boyd B, Rades T, Vanhecke D, Petri-Fink A, Rothin-Rutishauser B, Eastman S, Redelmeier T (2016) Formation of drug nanocrystals under nanoconfinement afforded by liposomes. RSC Adv 6:6223–6233. https://doi.org/10.1039/C5RA25898G

    CAS  Article  Google Scholar 

  12. Daniels TR, Delgado T, Helguera G, Penichet ML (2006) The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clinical Immunol 121:159–176. https://doi.org/10.1016/j.clim.2006.06.006

    CAS  Article  Google Scholar 

  13. Deatsch AE, Evans BA (2014) Heating efficiency in magnetic nanoparticle hyperthermia. J Magn Magn Mater 354:163–172. https://doi.org/10.1016/j.jmmm.2013.11.006

    CAS  Article  Google Scholar 

  14. Dickerson EB, Dreaden EC, Huang X, El-Sayed IH, Chu H, Pushpanketh S, Mcdonald JF, El-Sayed MA (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269:57–66. https://doi.org/10.1016/j.canlet.2008.04.026

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Fahmy T, Sinusas A, Kim D (2017) Compositions for nanoconfinement induced contrast enhancement and methods of making and using thereof. Google Patents.

  16. Feng L, Gao M, Tao D, Chen Q, Wang H, Dong Z, Chen M, Liu Z (2016) Cisplatin-prodrug-constructed liposomes as a versatile theranostic nanoplatform for bimodal imaging guided combination cancer therapy. Adv Func Mater 26:2207–2217. https://doi.org/10.1002/adfm.201504899

    CAS  Article  Google Scholar 

  17. Gabizon A, Bradbury M, Prabhakar U, Zamboni W, Libutti S, Grodzinski P (2014) Cancer nanomedicines: closing the translational gap. Lancet 384:2175–2176. https://doi.org/10.1016/S0140-6736(14)61457-4

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gignac PM, Kley NJ, Clarke JA, Colbert MW, Morhardt AC, Cerio D, Cost IN, Cox PG, Daza JD, Early CM (2016) Diffusible iodine-based contrast-enhanced computed tomography (diceCT): an emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues. J Anat 228:889–909. https://doi.org/10.1111/joa.12449

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Ho TA, Wang Y (2019) Enhancement of oil flow in shale nanopores by manipulating friction and viscosity. Physical Chemistry Chemical Physics. https://doi.org/10.1039/C9CP01960J

    Article  PubMed  Google Scholar 

  20. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120. https://doi.org/10.1021/ja057254a

    CAS  Article  Google Scholar 

  21. Iwaki S, Hanaoka K, Piao W, Komatsu T, Ueno T, Terai T, Nagano T (2012) Development of hypoxia-sensitive Gd3+-based MRI contrast agents. Bioorg Med Chem Lett 22:2798–2802. https://doi.org/10.1016/j.bmcl.2012.02.071

    CAS  Article  PubMed  Google Scholar 

  22. Jia G, Han Y, An Y, Ding Y, He C, Wang X, Tang Q (2018) NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials 178:302–316. https://doi.org/10.1016/j.biomaterials.2018.06.029

    CAS  Article  PubMed  Google Scholar 

  23. Jokerst JV, Cole AJ, Van De Sompel D, Gambhir SS (2012) Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice. ACS Nano 6:10366–10377. https://doi.org/10.1021/nn304347g

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Kaelin WG Jr (2005) The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 5:689–698. https://doi.org/10.1038/nrc1691

    CAS  Article  PubMed  Google Scholar 

  25. Keten S, Xu Z, Ihle B, Buehler MJ (2010) Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat Mater 9:359. https://doi.org/10.1038/NMAT2704

    CAS  Article  PubMed  Google Scholar 

  26. Koziolová E, Goel S, Chytil P, Janoušková O, Barnhart TE, Cai W, Etrych T (2017) A tumor-targeted polymer theranostics platform for positron emission tomography and fluorescence imaging. Nanoscale 9:10906–10918. https://doi.org/10.1039/C7NR03306K

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kuang Y, Zhang K, Cao Y, Chen X, Wang K, Liu M, Pei R (2017) Hydrophobic IR-780 dye encapsulated in cRGD-conjugated solid lipid nanoparticles for NIR imaging-guided photothermal therapy. ACS Appl Mater Interfaces 9:12217–12226. https://doi.org/10.1021/acsami.6b16705

    CAS  Article  PubMed  Google Scholar 

  28. Kweon S, Lee H-J, Hyung WJ, Suh J, Lim JS, Lim S-J (2010) Liposomes coloaded with iopamidol/lipiodol as a RES-targeted contrast agent for computed tomography imaging. Pharm Res 27:1408–1415. https://doi.org/10.1007/s11095-010-0135-5

    CAS  Article  PubMed  Google Scholar 

  29. Law JJ, Guven A, Wilson LJ (2014) Relaxivity enhancement of aquated Tris (β-diketonate) gadolinium (III) chelates by confinement within ultrashort single-walled carbon nanotubes. Contrast Media Mol Imaging 9:409–412. https://doi.org/10.1002/cmmi.1603

    CAS  Article  PubMed  Google Scholar 

  30. Lee SJ, Lee A, Hwang SR, Park J-S, Jang J, Huh MS, Jo D-G, Yoon S-Y, Byun Y, Kim SH (2014) TNF-α gene silencing using polymerized siRNA/thiolated glycol chitosan nanoparticles for rheumatoid arthritis. Mol Ther 22:397–408. https://doi.org/10.1038/mt.2013.245

    CAS  Article  PubMed  Google Scholar 

  31. Li X, Qian Y, Liu T, Hu X, Zhang G, You Y, Liu S (2011a) Amphiphilic multiarm star block copolymer-based multifunctional unimolecular micelles for cancer targeted drug delivery and MR imaging. Biomaterials 32:6595–6605. https://doi.org/10.1016/j.biomaterials.2011.05.049

    CAS  Article  PubMed  Google Scholar 

  32. Li W, Cai X, Kim C, Sun G, Zhang Y, Deng R, Yang M, Chen J, Achilefu S, Wang LV (2011b) Gold nanocages covered with thermally-responsive polymers for controlled release by high-intensity focused ultrasound. Nanoscale 3:1724–1730. https://doi.org/10.1039/C0NR00932F

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Liapis H, Flath A, Kitazawa S (1996) Integrin alpha V beta 3 expression by bone-residing breast cancer metastases. Diagn Mol Pathol 5:127–135. https://doi.org/10.1097/00019606-199606000-00008

    CAS  Article  PubMed  Google Scholar 

  34. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284. https://doi.org/10.1016/S0168-3659(99)00248-5

    CAS  Article  Google Scholar 

  35. Malzahn K, Ebert S, Schlegel I, Neudert O, Wagner M, Schütz G, Ide A, Roohi F, Münnemann K, Crespy D (2016) Design and control of nanoconfinement to achieve magnetic resonance contrast agents with high relaxivity. Adv Healthcare Mater 5:567–574. https://doi.org/10.1002/adhm.201500748

    CAS  Article  Google Scholar 

  36. Mamot C, Drummond DC, Greiser U, Hong K, Kirpotin DB, Marks JD, Park JW (2003) Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR-and EGFRvIII-overexpressing tumor cells. Can Res 63:3154–3161. https://doi.org/10.1158/0008-5472.CAN-05-1093

    CAS  Article  Google Scholar 

  37. Manrique A, Faraggi M, Vera P, Vilain D (1999) 201T1 and 99mTc-MIBI gated SPECT in patients with large perfusion defects and left ventricular dysfunction: comparison with equilibrium radionuclide angiography. J Nucl Med 40:805

    CAS  PubMed  Google Scholar 

  38. Markou A, Manning P, Kaya B, Datta SN, Bomanji JB, Conway GS (2005) [18F] fluoro-2-deoxy-d-glucose ([18F] FDG) positron emission tomography imaging of thymic carcinoid tumor presenting with recurrent Cushing’s syndrome. Eur J Endocrinol 152:521–525. https://doi.org/10.1530/eje.1.01839

    CAS  Article  PubMed  Google Scholar 

  39. Mendes M, Sousa JJ, Pais A, Vitorino C (2018) Targeted theranostic nanoparticles for brain tumor treatment. Pharmaceutics 10:181. https://doi.org/10.3390/pharmaceutics10040181

    CAS  Article  PubMed Central  Google Scholar 

  40. Misri R, Saatchi K, Häfeli UO (2012) Nanoprobes for hybrid SPECT/MR molecular imaging. Nanomedicine 7:719–733. https://doi.org/10.2217/nnm.12.32

    CAS  Article  PubMed  Google Scholar 

  41. Nahta R, Hung M-C, Esteva FJ (2004) The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Can Res 64:2343–2346. https://doi.org/10.1158/0008-5472.CAN-03-3856

    CAS  Article  Google Scholar 

  42. Nguyen TDT, Pitchaimani A, Ferrel C, Thakkar R, Aryal S (2018) Nano-confinement-driven enhanced magnetic relaxivity of SPIONs for targeted tumor bioimaging. Nanoscale 10:284–294. https://doi.org/10.1039/C7NR07035G

    CAS  Article  Google Scholar 

  43. Paci A, Veal G, Bardin C, Levêque D, Widmer N, Beijnen J, Astier A, Chatelut E (2014) Review of therapeutic drug monitoring of anticancer drugs part 1–cytotoxics. Eur J Cancer 50:2010–2019. https://doi.org/10.1016/j.ejca.2014.04.014

    CAS  Article  PubMed  Google Scholar 

  44. Ragheb RR, Kim D, Bandyopadhyay A, Chahboune H, Bulutoglu B, Ezaldein H, Criscione JM, Fahmy TM (2013) Induced clustered nanoconfinement of superparamagnetic iron oxide in biodegradable nanoparticles enhances transverse relaxivity for targeted theranostics. Magn Reson Med 70:1748–1760. https://doi.org/10.1002/mrm.24622

    CAS  Article  PubMed  Google Scholar 

  45. Rey DA, Strickland AD, Kirui D, Niamsiri N, Batt CA (2010) In vitro self-assembly of gold nanoparticle-coated poly (3-hydroxybutyrate) granules exhibiting plasmon-induced thermo-optical enhancements. ACS Appl Mater Interfaces 2:1804–1810. https://doi.org/10.1021/am100306m

    CAS  Article  PubMed  Google Scholar 

  46. Santra S, Kaittanis C, Santiesteban OJ, Perez JM (2011) Cell-specific, activatable, and theranostic prodrug for dual-targeted cancer imaging and therapy. J Am Chem Soc 133:16680–16688. https://doi.org/10.1021/ja207463b

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Simon BA (2000) Non-invasive imaging of regional lung function using X-ray computed tomography. J Clin Monit Comput 16:433–442. https://doi.org/10.1023/A:1011444826908

    CAS  Article  PubMed  Google Scholar 

  48. Spahn I, Coenen HH, Qaim SM (2004) Enhanced production possibility of the therapeutic radionuclides 64Cu, 67Cu and 89Sr via (n, p) reactions induced by fast spectral neutrons. Radiochim Acta 92:183–186. https://doi.org/10.1524/ract.92.3.183.30489

    CAS  Article  Google Scholar 

  49. Street W (2019) Cancer facts & figures 2019. American Cancer Society, Atlanta

    Google Scholar 

  50. Sun IC, Eun DK, Koo H, Ko CY, Kim HS, Yi DK, Choi K, Kwon IC, Kim K, Ahn CH (2011) Tumor-targeting gold particles for dual computed tomography/optical cancer imaging. Angew Chem Int Ed 50:9348–9351. https://doi.org/10.1002/anie.201102892

    CAS  Article  Google Scholar 

  51. Urtasun R, Parliament M, Mcewan A, Mercer J, Mannan R, Wiebe L, Morin C, Chapman J (1996) Measurement of hypoxia in human tumours by non-invasive SPECT imaging of iodoazomycin arabinoside. Br J Cancer Supplement 27:S209

    Google Scholar 

  52. US National Library of Medicine. Early Phase 1 (2000a) https://clinicaltrials.gov/ct2/results?term=theranostics&cond=cancer&age_v=&gndr=&type=&rslt=&phase=4&Search=Apply. Accessed 4 Dec 2019

  53. US National Library of Medicine. Phase 2 (2000b) https://clinicaltrials.gov/ct2/results?term=theranostics&cond=cancer&age_v=&gndr=&type=&rslt=&phase=1&Search=Apply. Accessed 4 Dec 2019

  54. US National Library of Medicine. Phase 1 (2000c) https://clinicaltrials.gov/ct2/results?term=theranostics&cond=cancer&age_v=&gndr=&type=&rslt=&phase=0&Search=Apply. Accessed 4 Dec 2019

  55. Von Maltzahn G, Park J-H, Agrawal A, Bandaru NK, Das SK, Sailor MJ, Bhatia SN (2009) Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Can Res 69:3892–3900. https://doi.org/10.1158/0008-5472.CAN-08-4242

    CAS  Article  Google Scholar 

  56. Wang S, Lu G (2017) Applications of gold nanoparticles in cancer imaging and treatment. Noble and precious metals-properties, nanoscale effects and applications. IntechOpen, London. https://doi.org/10.5772/intechopen.70901

    Google Scholar 

  57. Wang Y, Yang T, Ke H, Zhu A, Wang Y, Wang J, Shen J, Liu G, Chen C, Zhao Y (2015) Smart Albumin-Biomineralized Nanocomposites for Multimodal Imaging and Photothermal Tumor Ablation. Adv Mater 27:3874–3882. https://doi.org/10.1002/adma.201500229

    CAS  Article  PubMed  Google Scholar 

  58. Yao VJ, D’angelo S, Butler KS, Theron C, Smith TL, Marchio S, Gelovani JG, Sidman RL, Dobroff AS, Brinker CJ (2016) Ligand-targeted theranostic nanomedicines against cancer. J Control Release 240:267–286. https://doi.org/10.1016/j.jconrel.2016.01.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Yoo E, Choi JH, Hoang NH, Lee JS, Vuong S, Hur B, Han P, Oh KT, Fahmy T, Kim D (2018) Particle-in-particle platform for nanoconfinement-induced oncothermia. ACS Appl Bio Mater 1:1927–1941. https://doi.org/10.1021/acsabm.8b00490

    CAS  Article  Google Scholar 

  60. Zhang Z, Machac J, Helft G, Worthley SG, Tang C, Zaman AG, Rodriguez OJ, Buchsbaum MS, Fuster V, Badimon JJ (2006) Non-invasive imaging of atherosclerotic plaque macrophage in a rabbit model with F-18 FDG PET: a histopathological correlation. BMC Nucl Med 6:3. https://doi.org/10.1186/1471-2385-6-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang Y, Liu J-M, Yan X-P (2012) Self-assembly of folate onto polyethyleneimine-coated CdS/ZnS quantum dots for targeted turn-on fluorescence imaging of folate receptor overexpressed cancer cells. Anal Chem 85:228–234. https://doi.org/10.1021/ac3025653

    CAS  Article  PubMed  Google Scholar 

  62. Zhang K-L, Zhou J, Zhou H, Wu Y, Liu R, Wang L-L, Lin W-W, Huang G, Yang H-H (2017) Bioinspired, “active” stealth magneto-nanomicelles for theranostics combining efficient MRI and enhanced drug delivery. ACS Appl Mater Interfaces 9:30502–30509. https://doi.org/10.1021/acsami.7b10086

    CAS  Article  PubMed  Google Scholar 

  63. Zuo Y, Zhang Y, Huang R, Min Y (2019) The effect of nanoconfinement on the glass transition temperature of ionic liquids. Phys Chem Chem Phys 21:22–25. https://doi.org/10.1039/C8CP06479B

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dongin Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kang, C., Kim, D. Nanoconfinement-mediated cancer theranostics. Arch. Pharm. Res. 43, 110–117 (2020). https://doi.org/10.1007/s12272-020-01217-2

Download citation

Keywords

  • Nanoconfinement
  • Theranostics
  • Particle-in-Particle