Bookmarking by histone methylation ensures chromosomal integrity during mitosis

Abstract

The cell cycle is an orchestrated process that replicates DNA and transmits genetic information to daughter cells. Cell cycle progression is governed by diverse histone modifications that control gene transcription in a timely fashion. Histone modifications also regulate cell cycle progression by marking specific chromatic regions. While many reviews have covered histone phosphorylation and acetylation as regulators of the cell cycle, little attention has been paid to the roles of histone methylation in the faithful progression of mitosis. Indeed, specific histone methylations occurring before, during, or after mitosis affect kinetochore assembly and chromosome condensation and segregation. In addition to timing, histone methylations specify the chromatin regions such as chromosome arms, pericentromere, and centromere. Therefore, spatiotemporal programming of histone methylations ensures epigenetic inheritance through mitosis. This review mainly discusses histone methylations and their relevance to mitotic progression.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Abbas T, Shibata E, Park J, Jha S, Karnani N, Dutta A (2010) CRL4(Cdt2) regulates cell proliferation and histone gene expression by targeting PR-Set7/Set8 for degradation. Mol Cell 40:9–21

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Alabert C, Barth TK, Reveron-Gomez N, Sidoli S, Schmidt A, Jensen ON, Imhof A, Groth A (2015) Two distinct modes for propagation of histone PTMs across the cell cycle. Genes Dev 29:585–590

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Ali A, Veeranki SN, Tyagi S (2014) A SET-domain-independent role of WRAD complex in cell-cycle regulatory function of mixed lineage leukemia. Nucleic Acids Res 42:7611–7624

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Ali A, Veeranki SN, Chinchole A, Tyagi S (2017) MLL/WDR5 complex regulates Kif2A localization to ensure chromosome congression and proper spindle assembly during mitosis. Dev Cell 41(605–622):e607

    Google Scholar 

  5. Aoto T, Saitoh N, Sakamoto Y, Watanabe S, Nakao M (2008) Polycomb group protein-associated chromatin is reproduced in post-mitotic G1 phase and is required for S phase progression. J Biol Chem 283:18905–18915

    PubMed  CAS  Google Scholar 

  6. Bailey AO, Panchenko T, Shabanowitz J, Lehman SM, Bai DL, Hunt DF, Black BE, Foltz DR (2016) Identification of the post-translational modifications present in centromeric chromatin. Mol Cell Proteomics 15:918–931

    PubMed  CAS  Google Scholar 

  7. Banerjee T, Chakravarti D (2011) A peek into the complex realm of histone phosphorylation. Mol Cell Biol 31:4858–4873

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Bannister AJ, Schneider R, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T (2005) Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J Biol Chem 280:17732–17736

    PubMed  CAS  Google Scholar 

  9. Barber CM, Turner FB, Wang Y, Hagstrom K, Taverna SD, Mollah S, Ueberheide B, Meyer BJ, Hunt DF, Cheung P, Allis CD (2004) The enhancement of histone H4 and H2A serine 1 phosphorylation during mitosis and S-phase is evolutionarily conserved. Chromosoma 112:360–371

    PubMed  CAS  Google Scholar 

  10. Barra V, Logsdon GA, Scelfo A, Hoffmann S, Herve S, Aslanian A, Nechemia-Arbely Y, Cleveland DW, Black BE, Fachinetti D (2019) Phosphorylation of CENP-A on serine 7 does not control centromere function. Nat Commun 10:175

    PubMed  PubMed Central  Google Scholar 

  11. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    PubMed  CAS  Google Scholar 

  12. Beck DB, Oda H, Shen SS, Reinberg D (2012) PR-Set7 and H4K20me1: at the crossroads of genome integrity, cell cycle, chromosome condensation, and transcription. Genes Dev 26:325–337

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Benetti R, Gonzalo S, Jaco I, Schotta G, Klatt P, Jenuwein T, Blasco MA (2007) Suv4-20h deficiency results in telomere elongation and derepression of telomere recombination. J Cell Biol 178:925–936

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Bergmann JH, Rodriguez MG, Martins NM, Kimura H, Kelly DA, Masumoto H, Larionov V, Jansen LE, Earnshaw WC (2011) Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J 30:328–340

    PubMed  CAS  Google Scholar 

  15. Black JC, Whetstine JR (2011) Chromatin landscape: methylation beyond transcription. Epigenetics 6:9–15

    PubMed  CAS  Google Scholar 

  16. Black JC, Allen A, Van Rechem C, Forbes E, Longworth M, Tschop K, Rinehart C, Quiton J, Walsh R, Smallwood A, Dyson NJ, Whetstine JR (2010) Conserved antagonism between JMJD2A/KDM4A and HP1gamma during cell cycle progression. Mol Cell 40:736–748

    PubMed  CAS  Google Scholar 

  17. Black JC, Van Rechem C, Whetstine JR (2012) Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48:491–507

    PubMed  CAS  Google Scholar 

  18. Blackledge NP, Rose NR, Klose RJ (2015) Targeting Polycomb systems to regulate gene expression: modifications to a complex story. Nat Rev Mol Cell Biol 16:643–649

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Bonenfant D, Towbin H, Coulot M, Schindler P, Mueller DR, van Oostrum J (2007) Analysis of dynamic changes in post-translational modifications of human histones during cell cycle by mass spectrometry. Mol Cell Proteom 6:1917–1932

    CAS  Google Scholar 

  20. Boros J, Arnoult N, Stroobant V, Collet JF, Decottignies A (2014) Polycomb repressive complex 2 and H3K27me3 cooperate with H3K9 methylation to maintain heterochromatin protein 1alpha at chromatin. Mol Cell Biol 34:3662–3674

    PubMed  PubMed Central  Google Scholar 

  21. Bou Kheir T, Lund AH (2010) Epigenetic dynamics across the cell cycle. Essays Biochem 48:107–120

    PubMed  Google Scholar 

  22. Breiling A, Lyko F (2015) Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenetics Chromatin 8:24

    PubMed  PubMed Central  Google Scholar 

  23. Carmena M, Wheelock M, Funabiki H, Earnshaw WC (2012) The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 13:789–803

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Centore RC, Havens CG, Manning AL, Li JM, Flynn RL, Tse A, Jin J, Dyson NJ, Walter JC, Zou L (2010) CRL4(Cdt2)-mediated destruction of the histone methyltransferase Set8 prevents premature chromatin compaction in S phase. Mol Cell 40:22–33

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Chantalat S, Depaux A, Hery P, Barral S, Thuret JY, Dimitrov S, Gerard M (2011) Histone H3 trimethylation at lysine 36 is associated with constitutive and facultative heterochromatin. Genome Res 21:1426–1437

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Chiang YC, Park IY, Terzo EA, Tripathi DN, Mason FM, Fahey CC, Karki M, Shuster CB, Sohn BH, Chowdhury P, Powell RT, Ohi R, Tsai YS, de Cubas AA, Khan A, Davis IJ, Strahl BD, Parker JS, Dere R, Walker CL, Rathmell WK (2018) SETD2 haploinsufficiency for microtubule methylation is an early driver of genomic instability in renal cell carcinoma. Cancer Res 78:3135–3146

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Cimini D, Mattiuzzo M, Torosantucci L, Degrassi F (2003) Histone hyperacetylation in mitosis prevents sister chromatid separation and produces chromosome segregation defects. Mol Biol Cell 14:3821–3833

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Congdon LM, Houston SI, Veerappan CS, Spektor TM, Rice JC (2010) PR-Set7-mediated monomethylation of histone H4 lysine 20 at specific genomic regions induces transcriptional repression. J Cell Biochem 110:609–619

    PubMed  CAS  Google Scholar 

  29. Dai J, Sultan S, Taylor SS, Higgins JM (2005) The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes Dev 19:472–488

    PubMed  PubMed Central  CAS  Google Scholar 

  30. de Castro IJ, Budzak J, Di Giacinto ML, Ligammari L, Gokhan E, Spanos C, Moralli D, Richardson C, de Las Heras JI, Salatino S, Schirmer EC, Ullman KS, Bickmore WA, Green C, Rappsilber J, Lamble S, Goldberg MW, Vinciotti V, Vagnarelli P (2017) Repo-Man/PP1 regulates heterochromatin formation in interphase. Nat Commun 8:14048

    PubMed  PubMed Central  Google Scholar 

  31. Deb M, Kar S, Sengupta D, Shilpi A, Parbin S, Rath SK, Londhe VA, Patra SK (2014) Chromatin dynamics: H3K4 methylation and H3 variant replacement during development and in cancer. Cell Mol Life Sci 71:3439–3463

    PubMed  CAS  Google Scholar 

  32. Deshpande AJ, Deshpande A, Sinha AU, Chen L, Chang J, Cihan A, Fazio M, Chen CW, Zhu N, Koche R, Dzhekieva L, Ibanez G, Dias S, Banka D, Krivtsov A, Luo M, Roeder RG, Bradner JE, Bernt KM, Armstrong SA (2014) AF10 regulates progressive H3K79 methylation and HOX gene expression in diverse AML subtypes. Cancer Cell 26:896–908

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Dimitrova E, Turberfield AH, Klose RJ (2015) Histone demethylases in chromatin biology and beyond. EMBO Rep 16:1620–1639

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Doenecke D (2014) Chromatin dynamics from S-phase to mitosis: contributions of histone modifications. Cell Tissue Res 356:467–475

    PubMed  CAS  Google Scholar 

  35. Dronamraju R, Jha DK, Eser U, Adams AT, Dominguez D, Choudhury R, Chiang YC, Rathmell WK, Emanuele MJ, Churchman LS, Strahl BD (2018) Set2 methyltransferase facilitates cell cycle progression by maintaining transcriptional fidelity. Nucleic Acids Res 46:1331–1344

    PubMed  CAS  Google Scholar 

  36. Duan Q, Chen H, Costa M, Dai W (2008) Phosphorylation of H3S10 blocks the access of H3K9 by specific antibodies and histone methyltransferase. Implication in regulating chromatin dynamics and epigenetic inheritance during mitosis. J Biol Chem 283:33585–33590

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Dunleavy E, Pidoux A, Allshire R (2005) Centromeric chromatin makes its mark. Trends Biochem Sci 30:172–175

    PubMed  CAS  Google Scholar 

  38. Eot-Houllier G, Fulcrand G, Watanabe Y, Magnaghi-Jaulin L, Jaulin C (2008) Histone deacetylase 3 is required for centromeric H3K4 deacetylation and sister chromatid cohesion. Genes Dev 22:2639–2644

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Eot-Houllier G, Magnaghi-Jaulin L, Fulcrand G, Moyroud FX, Monier S, Jaulin C (2018) Aurora A-dependent CENP-A phosphorylation at inner centromeres protects bioriented chromosomes against cohesion fatigue. Nat Commun 9:1888

    PubMed  PubMed Central  Google Scholar 

  40. Ernst J, Kellis M (2010) Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat Biotechnol 28:817–825

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein BE (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473:43–49

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Evertts AG, Manning AL, Wang X, Dyson NJ, Garcia BA, Coller HA (2013) H4K20 methylation regulates quiescence and chromatin compaction. Mol Biol Cell 24:3025–3037

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Fachinetti D, Logsdon GA, Abdullah A, Selzer EB, Cleveland DW, Black BE (2017) CENP-A modifications on Ser68 and Lys124 are dispensable for establishment, maintenance, and long-term function of human centromeres. Dev Cell 40:104–113

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Falandry C, Fourel G, Galy V, Ristriani T, Horard B, Bensimon E, Salles G, Gilson E, Magdinier F (2010) CLLD8/KMT1F is a lysine methyltransferase that is important for chromosome segregation. J Biol Chem 285:20234–20241

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K, Zhang Y (2002) Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 12:1052–1058

    PubMed  CAS  Google Scholar 

  46. Ferrari KJ, Scelfo A, Jammula S, Cuomo A, Barozzi I, Stutzer A, Fischle W, Bonaldi T, Pasini D (2014) Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity. Mol Cell 53:49–62

    PubMed  CAS  Google Scholar 

  47. Follmer NE, Wani AH, Francis NJ (2012) A polycomb group protein is retained at specific sites on chromatin in mitosis. PLoS Genet 8:e1003135

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Fonseca JP, Steffen PA, Muller S, Lu J, Sawicka A, Seiser C, Ringrose L (2012) In vivo Polycomb kinetics and mitotic chromatin binding distinguish stem cells from differentiated cells. Genes Dev 26:857–871

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Fu H, Maunakea AK, Martin MM, Huang L, Zhang Y, Ryan M, Kim R, Lin CM, Zhao K, Aladjem MI (2013) Methylation of histone H3 on lysine 79 associates with a group of replication origins and helps limit DNA replication once per cell cycle. PLoS Genet 9:e1003542

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Fukagawa T (2017) Critical histone post-translational modifications for centromere function and propagation. Cell Cycle 16:1259–1265

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Gehani SS, Agrawal-Singh S, Dietrich N, Christophersen NS, Helin K, Hansen K (2010) Polycomb group protein displacement and gene activation through MSK-dependent H3K27me3S28 phosphorylation. Mol Cell 39:886–900

    PubMed  CAS  Google Scholar 

  52. Ginno PA, Burger L, Seebacher J, Iesmantavicius V, Schubeler D (2018) Cell cycle-resolved chromatin proteomics reveals the extent of mitotic preservation of the genomic regulatory landscape. Nat Commun 9:4048

    PubMed  PubMed Central  Google Scholar 

  53. Gopalakrishnan S, Sullivan BA, Trazzi S, Della Valle G, Robertson KD (2009) DNMT3B interacts with constitutive centromere protein CENP-C to modulate DNA methylation and the histone code at centromeric regions. Hum Mol Genet 18:3178–3193

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Goto H, Tomono Y, Ajiro K, Kosako H, Fujita M, Sakurai M, Okawa K, Iwamatsu A, Okigaki T, Takahashi T, Inagaki M (1999) Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation. J Biol Chem 274:25543–25549

    PubMed  CAS  Google Scholar 

  55. Groth A, Rocha W, Verreault A, Almouzni G (2007) Chromatin challenges during DNA replication and repair. Cell 128:721–733

    PubMed  CAS  Google Scholar 

  56. Guppy BJ, McManus KJ (2015) Mitotic accumulation of dimethylated lysine 79 of histone H3 is important for maintaining genome integrity during mitosis in human cells. Genetics 199:423–433

    PubMed  Google Scholar 

  57. Hahn M, Dambacher S, Dulev S, Kuznetsova AY, Eck S, Worz S, Sadic D, Schulte M, Mallm JP, Maiser A, Debs P, von Melchner H, Leonhardt H, Schermelleh L, Rohr K, Rippe K, Storchova Z, Schotta G (2013) Suv4-20h2 mediates chromatin compaction and is important for cohesin recruitment to heterochromatin. Genes Dev 27:859–872

    PubMed  PubMed Central  CAS  Google Scholar 

  58. Hake SB, Garcia BA, Kauer M, Baker SP, Shabanowitz J, Hunt DF, Allis CD (2005) Serine 31 phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase chromosomes. Proc Natl Acad Sci U S A 102:6344–6349

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Han A, Lee KH, Hyun S, Lee NJ, Lee SJ, Hwang H, Yu J (2011) Methylation-mediated control of aurora kinase B and Haspin with epigenetically modified histone H3 N-terminal peptides. Bioorg Med Chem 19:2373–2377

    PubMed  CAS  Google Scholar 

  60. Harashima H, Dissmeyer N, Schnittger A (2013) Cell cycle control across the eukaryotic kingdom. Trends Cell Biol 23:345–356

    PubMed  CAS  Google Scholar 

  61. He Y, Zhao Y, Wang L, Bohrer LR, Pan Y, Wang L, Huang H (2018) LSD1 promotes S-phase entry and tumorigenesis via chromatin co-occupation with E2F1 and selective H3K9 demethylation. Oncogene 37:534–543

    PubMed  CAS  Google Scholar 

  62. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA, Wang W, Weng Z, Green RD, Crawford GE, Ren B (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39:311–318

    PubMed  CAS  Google Scholar 

  63. Heit R, Rattner JB, Chan GK, Hendzel MJ (2009) G2 histone methylation is required for the proper segregation of chromosomes. J Cell Sci 122:2957–2968

    PubMed  CAS  Google Scholar 

  64. Herz HM, Mohan M, Garruss AS, Liang K, Takahashi YH, Mickey K, Voets O, Verrijzer CP, Shilatifard A (2012) Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev 26:2604–2620

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Hinchcliffe EH, Day CA, Karanjeet KB, Fadness S, Langfald A, Vaughan KT, Dong Z (2016) Chromosome missegregation during anaphase triggers p53 cell cycle arrest through histone H3.3 Ser31 phosphorylation. Nat Cell Biol 18:668–675

    PubMed  CAS  Google Scholar 

  66. Holoch D, Margueron R (2017) Mechanisms regulating PRC2 recruitment and enzymatic activity. Trends Biochem Sci 42:531–542

    PubMed  CAS  Google Scholar 

  67. Hori T, Shang WH, Toyoda A, Misu S, Monma N, Ikeo K, Molina O, Vargiu G, Fujiyama A, Kimura H, Earnshaw WC, Fukagawa T (2014) Histone H4 Lys 20 monomethylation of the CENP-A nucleosome is essential for kinetochore assembly. Dev Cell 29:740–749

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Hsia DA, Tepper CG, Pochampalli MR, Hsia EY, Izumiya C, Huerta SB, Wright ME, Chen HW, Kung HJ, Izumiya Y (2010) KDM8, a H3K36me2 histone demethylase that acts in the cyclin A1 coding region to regulate cancer cell proliferation. Proc Natl Acad Sci U S A 107:9671–9676

    PubMed  PubMed Central  CAS  Google Scholar 

  69. Hublitz P, Albert M, Peters AH (2009) Mechanisms of transcriptional repression by histone lysine methylation. Int J Dev Biol 53:335–354

    PubMed  CAS  Google Scholar 

  70. Hwang WW, Madhani HD (2009) Nonredundant requirement for multiple histone modifications for the early anaphase release of the mitotic exit regulator Cdc14 from nucleolar chromatin. PLoS Genet 5:e1000588

    PubMed  PubMed Central  Google Scholar 

  71. Hyun K, Jeon J, Park K, Kim J (2017) Writing, erasing and reading histone lysine methylations. Exp Mol Med 49:e324

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Ishimura A, Minehata K, Terashima M, Kondoh G, Hara T, Suzuki T (2012) Jmjd5, an H3K36me2 histone demethylase, modulates embryonic cell proliferation through the regulation of Cdkn1a expression. Development 139:749–759

    PubMed  CAS  Google Scholar 

  73. Javasky E, Shamir I, Gandhi S, Egri S, Sandler O, Rothbart SB, Kaplan N, Jaffe JD, Goren A, Simon I (2018) Study of mitotic chromatin supports a model of bookmarking by histone modifications and reveals nucleosome deposition patterns. Genome Res 28:1455–1466

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Jbara M, Guttmann-Raviv N, Maity SK, Ayoub N, Brik A (2017) Total chemical synthesis of methylated analogues of histone 3 revealed KDM4D as a potential regulator of H3K79me3. Bioorg Med Chem 25:4966–4970

    PubMed  CAS  Google Scholar 

  75. Jeong YS, Cho S, Park JS, Ko Y, Kang YK (2010) Phosphorylation of serine-10 of histone H3 shields modified lysine-9 selectively during mitosis. Genes Cells 15:181–192

    PubMed  CAS  Google Scholar 

  76. Jiang T, Hoover ME, Holt MV, Freitas MA, Marshall AG, Young NL (2018) Middle-down characterization of the cell cycle dependence of histone H4 posttranslational modifications and proteoforms. Proteomics 18:e1700442

    PubMed  Google Scholar 

  77. Jin Y, Huo B, Fu X, Cheng Z, Zhu J, Zhang Y, Hao T, Hu X (2017) LSD1 knockdown reveals novel histone lysine methylation in human breast cancer MCF-7 cells. Biomed Pharmacother 92:896–904

    PubMed  CAS  Google Scholar 

  78. Joo HY, Zhai L, Yang C, Nie S, Erdjument-Bromage H, Tempst P, Chang C, Wang H (2007) Regulation of cell cycle progression and gene expression by H2A deubiquitination. Nature 449:1068–1072

    PubMed  CAS  Google Scholar 

  79. Jorgensen S, Elvers I, Trelle MB, Menzel T, Eskildsen M, Jensen ON, Helleday T, Helin K, Sorensen CS (2007) The histone methyltransferase SET8 is required for S-phase progression. J Cell Biol 179:1337–1345

    PubMed  PubMed Central  Google Scholar 

  80. Jorgensen S, Schotta G, Sorensen CS (2013) Histone H4 lysine 20 methylation: key player in epigenetic regulation of genomic integrity. Nucleic Acids Res 41:2797–2806

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Julien E, Herr W (2004) A switch in mitotic histone H4 lysine 20 methylation status is linked to M phase defects upon loss of HCF-1. Mol Cell 14:713–725

    PubMed  CAS  Google Scholar 

  82. Kang JY, Kim JY, Kim KB, Park JW, Cho H, Hahm JY, Chae YC, Kim D, Kook H, Rhee S, Ha NC, Seo SB (2018) KDM2B is a histone H3K79 demethylase and induces transcriptional repression via sirtuin-1-mediated chromatin silencing. FASEB J 32:5737–5750

    PubMed  CAS  Google Scholar 

  83. Kelly AE, Ghenoiu C, Xue JZ, Zierhut C, Kimura H, Funabiki H (2010) Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science 330:235–239

    PubMed  PubMed Central  CAS  Google Scholar 

  84. Kim W, Kim R, Park G, Park JW, Kim JE (2012) Deficiency of H3K79 histone methyltransferase Dot1-like protein (DOT1L) inhibits cell proliferation. J Biol Chem 287:5588–5599

    PubMed  CAS  Google Scholar 

  85. Kim W, Choi M, Kim JE (2014) The histone methyltransferase Dot1/DOT1L as a critical regulator of the cell cycle. Cell Cycle 13:726–738

    PubMed  PubMed Central  CAS  Google Scholar 

  86. Kogure M, Takawa M, Cho HS, Toyokawa G, Hayashi K, Tsunoda T, Kobayashi T, Daigo Y, Sugiyama M, Atomi Y, Nakamura Y, Hamamoto R (2013) Deregulation of the histone demethylase JMJD2A is involved in human carcinogenesis through regulation of the G(1)/S transition. Cancer Lett 336:76–84

    PubMed  CAS  Google Scholar 

  87. Kouskouti A, Talianidis I (2005) Histone modifications defining active genes persist after transcriptional and mitotic inactivation. EMBO J 24:347–357

    PubMed  CAS  Google Scholar 

  88. Kruhlak MJ, Hendzel MJ, Fischle W, Bertos NR, Hameed S, Yang XJ, Verdin E, Bazett-Jones DP (2001) Regulation of global acetylation in mitosis through loss of histone acetyltransferases and deacetylases from chromatin. J Biol Chem 276:38307–38319

    PubMed  CAS  Google Scholar 

  89. Kupershmit I, Khoury-Haddad H, Awwad SW, Guttmann-Raviv N, Ayoub N (2014) KDM4C (GASC1) lysine demethylase is associated with mitotic chromatin and regulates chromosome segregation during mitosis. Nucleic Acids Res 42:6168–6182

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Lam AL, Boivin CD, Bonney CF, Rudd MK, Sullivan BA (2006) Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. Proc Natl Acad Sci U S A 103:4186–4191

    PubMed  PubMed Central  CAS  Google Scholar 

  91. Latham JA, Chosed RJ, Wang S, Dent SY (2011) Chromatin signaling to kinetochores: transregulation of Dam1 methylation by histone H2B ubiquitination. Cell 146:709–719

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Lau PN, Cheung P (2011) Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagonizes polycomb silencing. Proc Natl Acad Sci U S A 108:2801–2806

    PubMed  PubMed Central  CAS  Google Scholar 

  93. Li Y, Kao GD, Garcia BA, Shabanowitz J, Hunt DF, Qin J, Phelan C, Lazar MA (2006) A novel histone deacetylase pathway regulates mitosis by modulating Aurora B kinase activity. Genes Dev 20:2566–2579

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Li Z, Nie F, Wang S, Li L (2011) Histone H4 Lys 20 monomethylation by histone methylase SET8 mediates Wnt target gene activation. Proc Natl Acad Sci U S A 108:3116–3123

    PubMed  PubMed Central  CAS  Google Scholar 

  95. Li G, Ji T, Chen J, Fu Y, Hou L, Feng Y, Zhang T, Song T, Zhao J, Endo Y, Lin H, Cai X, Cang Y (2017) CRL4(DCAF8) ubiquitin ligase targets histone H3K79 and promotes H3K9 methylation in the liver. Cell Rep 18:1499–1511

    PubMed  CAS  Google Scholar 

  96. Li M, Dong Q, Zhu B (2017) Aurora kinase B phosphorylates histone H3.3 at Serine 31 during mitosis in mammalian cells. J Mol Biol 429:2042–2045

    PubMed  CAS  Google Scholar 

  97. Lim HJ, Dimova NV, Tan MK, Sigoillot FD, King RW, Shi Y (2013) The G2/M regulator histone demethylase PHF8 is targeted for degradation by the anaphase-promoting complex containing CDC20. Mol Cell Biol 33:4166–4180

    PubMed  PubMed Central  CAS  Google Scholar 

  98. Lin CH, Wong SH, Kurzer JH, Schneidawind C, Wei MC, Duque-Afonso J, Jeong J, Feng X, Cleary ML (2018) SETDB2 links E2A-PBX1 to cell-cycle dysregulation in acute leukemia through CDKN2C repression. Cell Rep 23:1166–1177

    PubMed  PubMed Central  CAS  Google Scholar 

  99. Liu W, Tanasa B, Tyurina OV, Zhou TY, Gassmann R, Liu WT, Ohgi KA, Benner C, Garcia-Bassets I, Aggarwal AK, Desai A, Dorrestein PC, Glass CK, Rosenfeld MG (2010) PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature 466:508–512

    PubMed  PubMed Central  CAS  Google Scholar 

  100. Liu Y, Chen S, Wang S, Soares F, Fischer M, Meng F, Du Z, Lin C, Meyer C, DeCaprio JA, Brown M, Liu XS, He HH (2017) Transcriptional landscape of the human cell cycle. Proc Natl Acad Sci U S A 114:3473–3478

    PubMed  PubMed Central  CAS  Google Scholar 

  101. Loomis RJ, Naoe Y, Parker JB, Savic V, Bozovsky MR, Macfarlan T, Manley JL, Chakravarti D (2009) Chromatin binding of SRp20 and ASF/SF2 and dissociation from mitotic chromosomes is modulated by histone H3 serine 10 phosphorylation. Mol Cell 33:450–461

    PubMed  PubMed Central  CAS  Google Scholar 

  102. Lv S, Bu W, Jiao H, Liu B, Zhu L, Zhao H, Liao J, Li J, Xu X (2010) LSD1 is required for chromosome segregation during mitosis. Eur J Cell Biol 89:557–563

    PubMed  CAS  Google Scholar 

  103. Ma Y, Kanakousaki K, Buttitta L (2015) How the cell cycle impacts chromatin architecture and influences cell fate. Front Genet 6:19

    PubMed  PubMed Central  Google Scholar 

  104. Malik S, Bhaumik SR (2010) Mixed lineage leukemia: histone H3 lysine 4 methyltransferases from yeast to human. FEBS J 277:1805–1821

    PubMed  PubMed Central  CAS  Google Scholar 

  105. Marcon E, Ni Z, Pu S, Turinsky AL, Trimble SS, Olsen JB, Silverman-Gavrila R, Silverman-Gavrila L, Phanse S, Guo H, Zhong G, Guo X, Young P, Bailey S, Roudeva D, Zhao D, Hewel J, Li J, Graslund S, Paduch M, Kossiakoff AA, Lupien M, Emili A, Wodak SJ, Greenblatt J (2014) Human-chromatin-related protein interactions identify a demethylase complex required for chromosome segregation. Cell Rep 8:297–310

    PubMed  CAS  Google Scholar 

  106. Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469:343–349

    PubMed  PubMed Central  CAS  Google Scholar 

  107. Margueron R, Justin N, Ohno K, Sharpe ML, Son J, Drury WJ 3rd, Voigt P, Martin SR, Taylor WR, De Marco V, Pirrotta V, Reinberg D, Gamblin SJ (2009) Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461:762–767

    PubMed  PubMed Central  CAS  Google Scholar 

  108. McGinty RK, Tan S (2015) Nucleosome structure and function. Chem Rev 115:2255–2273

    PubMed  CAS  Google Scholar 

  109. McManus KJ, Biron VL, Heit R, Underhill DA, Hendzel MJ (2006) Dynamic changes in histone H3 lysine 9 methylations: identification of a mitosis-specific function for dynamic methylation in chromosome congression and segregation. J Biol Chem 281:8888–8897

    PubMed  CAS  Google Scholar 

  110. Mersfelder EL, Parthun MR (2006) The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure. Nucleic Acids Res 34:2653–2662

    PubMed  PubMed Central  CAS  Google Scholar 

  111. Mishra BP, Ansari KI, Mandal SS (2009) Dynamic association of MLL1, H3K4 trimethylation with chromatin and Hox gene expression during the cell cycle. FEBS J 276:1629–1640

    PubMed  CAS  Google Scholar 

  112. Morera L, Lubbert M, Jung M (2016) Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin Epigenetics 8:57

    PubMed  PubMed Central  Google Scholar 

  113. Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716

    PubMed  CAS  Google Scholar 

  114. Nguyen AT, Zhang Y (2011) The diverse functions of Dot1 and H3K79 methylation. Genes Dev 25:1345–1358

    PubMed  PubMed Central  CAS  Google Scholar 

  115. Oda H, Okamoto I, Murphy N, Chu J, Price SM, Shen MM, Torres-Padilla ME, Heard E, Reinberg D (2009) Monomethylation of histone H4-lysine 20 is involved in chromosome structure and stability and is essential for mouse development. Mol Cell Biol 29:2278–2295

    PubMed  PubMed Central  CAS  Google Scholar 

  116. Ohzeki J, Shono N, Otake K, Martins NM, Kugou K, Kimura H, Nagase T, Larionov V, Earnshaw WC, Masumoto H (2016) KAT7/HBO1/MYST2 regulates CENP-A chromatin assembly by antagonizing Suv39h1-mediated centromere inactivation. Dev Cell 37:413–427

    PubMed  PubMed Central  CAS  Google Scholar 

  117. Oomen ME, Dekker J (2017) Epigenetic characteristics of the mitotic chromosome in 1D and 3D. Crit Rev Biochem Mol Biol 52:185–204

    PubMed  PubMed Central  CAS  Google Scholar 

  118. Orouji E, Utikal J (2018) Tackling malignant melanoma epigenetically: histone lysine methylation. Clin Epigenetics 10:145

    PubMed  PubMed Central  CAS  Google Scholar 

  119. O'Sullivan RJ, Kubicek S, Schreiber SL, Karlseder J (2010) Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat Struct Mol Biol 17:1218–1225

    PubMed  PubMed Central  CAS  Google Scholar 

  120. Otto T, Sicinski P (2017) Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer 17:93–115

    PubMed  PubMed Central  CAS  Google Scholar 

  121. Palozola KC, Donahue G, Liu H, Grant GR, Becker JS, Cote A, Yu H, Raj A, Zaret KS (2017) Mitotic transcription and waves of gene reactivation during mitotic exit. Science 358:119–122

    PubMed  PubMed Central  CAS  Google Scholar 

  122. Palozola KC, Liu H, Nicetto D, Zaret KS (2017) Low-level, global transcription during mitosis and dynamic gene reactivation during mitotic exit. Cold Spring Harb Symp Quant Biol 82:197–205

    PubMed  Google Scholar 

  123. Park JA, Kim AJ, Kang Y, Jung YJ, Kim HK, Kim KC (2011) Deacetylation and methylation at histone H3 lysine 9 (H3K9) coordinate chromosome condensation during cell cycle progression. Mol Cells 31:343–349

    PubMed  PubMed Central  CAS  Google Scholar 

  124. Park IY, Powell RT, Tripathi DN, Dere R, Ho TH, Blasius TL, Chiang YC, Davis IJ, Fahey CC, Hacker KE, Verhey KJ, Bedford MT, Jonasch E, Rathmell WK, Walker CL (2016) Dual chromatin and cytoskeletal remodeling by SETD2. Cell 166:950–962

    PubMed  PubMed Central  CAS  Google Scholar 

  125. Partridge JF, Scott KS, Bannister AJ, Kouzarides T, Allshire RC (2002) cis-acting DNA from fission yeast centromeres mediates histone H3 methylation and recruitment of silencing factors and cohesin to an ectopic site. Curr Biol 12:1652–1660

    PubMed  CAS  Google Scholar 

  126. Patzlaff JS, Terrenoire E, Turner BM, Earnshaw WC, Paulson JR (2010) Acetylation of core histones in response to HDAC inhibitors is diminished in mitotic HeLa cells. Exp Cell Res 316:2123–2135

    PubMed  PubMed Central  CAS  Google Scholar 

  127. Pesavento JJ, Yang H, Kelleher NL, Mizzen CA (2008) Certain and progressive methylation of histone H4 at lysine 20 during the cell cycle. Mol Cell Biol 28:468–486

    PubMed  CAS  Google Scholar 

  128. Peters AH, Kubicek S, Mechtler K, O'Sullivan RJ, Derijck AA, Perez-Burgos L, Kohlmaier A, Opravil S, Tachibana M, Shinkai Y, Martens JH, Jenuwein T (2003) Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 12:1577–1589

    PubMed  CAS  Google Scholar 

  129. Preuss U, Landsberg G, Scheidtmann KH (2003) Novel mitosis-specific phosphorylation of histone H3 at Thr11 mediated by Dlk/ZIP kinase. Nucleic Acids Res 31:878–885

    PubMed  PubMed Central  CAS  Google Scholar 

  130. Qi HH, Sarkissian M, Hu GQ, Wang Z, Bhattacharjee A, Gordon DB, Gonzales M, Lan F, Ongusaha PP, Huarte M, Yaghi NK, Lim H, Garcia BA, Brizuela L, Zhao K, Roberts TM, Shi Y (2010) Histone H4K20/H3K9 demethylase PHF8 regulates zebrafish brain and craniofacial development. Nature 466:503–507

    PubMed  PubMed Central  CAS  Google Scholar 

  131. Qian J, Beullens M, Lesage B, Bollen M (2013) Aurora B defines its own chromosomal targeting by opposing the recruitment of the phosphatase scaffold Repo-Man. Curr Biol 23:1136–1143

    PubMed  CAS  Google Scholar 

  132. Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406:593–599

    PubMed  CAS  Google Scholar 

  133. Rice JC, Nishioka K, Sarma K, Steward R, Reinberg D, Allis CD (2002) Mitotic-specific methylation of histone H4 Lys 20 follows increased PR-Set7 expression and its localization to mitotic chromosomes. Genes Dev 16:2225–2230

    PubMed  PubMed Central  CAS  Google Scholar 

  134. Rivera C, Gurard-Levin ZA, Almouzni G, Loyola A (2014) Histone lysine methylation and chromatin replication. Biochim Biophys Acta 1839:1433–1439

    PubMed  CAS  Google Scholar 

  135. Rogawski DS, Grembecka J, Cierpicki T (2016) H3K36 methyltransferases as cancer drug targets: rationale and perspectives for inhibitor development. Future Med Chem 8:1589–1607

    PubMed  PubMed Central  CAS  Google Scholar 

  136. Rotili D, Mai A (2011) Targeting histone demethylases: a new avenue for the fight against cancer. Genes Cancer 2:663–679

    PubMed  PubMed Central  CAS  Google Scholar 

  137. Saksouk N, Simboeck E, Dejardin J (2015) Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin 8:3

    PubMed  PubMed Central  CAS  Google Scholar 

  138. Sawicka A, Seiser C (2014) Sensing core histone phosphorylation—a matter of perfect timing. Biochim Biophys Acta 1839:711–718

    PubMed  PubMed Central  CAS  Google Scholar 

  139. Schibler A, Koutelou E, Tomida J, Wilson-Pham M, Wang L, Lu Y, Cabrera AP, Chosed RJ, Li W, Li B, Shi X, Wood RD, Dent SY (2016) Histone H3K4 methylation regulates deactivation of the spindle assembly checkpoint through direct binding of Mad2. Genes Dev 30:1187–1197

    PubMed  PubMed Central  CAS  Google Scholar 

  140. Schneider R, Bannister AJ, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T (2004) Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol 6:73–77

    PubMed  CAS  Google Scholar 

  141. Schooley A, Moreno-Andres D, De Magistris P, Vollmer B, Antonin W (2015) The lysine demethylase LSD1 is required for nuclear envelope formation at the end of mitosis. J Cell Sci 128:3466–3477

    PubMed  CAS  Google Scholar 

  142. Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, Reinberg D, Jenuwein T (2004) A silencing pathway to induce H3–K9 and H4–K20 trimethylation at constitutive heterochromatin. Genes Dev 18:1251–1262

    PubMed  PubMed Central  CAS  Google Scholar 

  143. Seibert M, Kruger M, Watson NA, Sen O, Daum JR, Slotman JA, Braun T, Houtsmuller AB, Gorbsky GJ, Jacob R, Kracht M, Higgins JMG, Schmitz ML (2019) CDK1-mediated phosphorylation at H2B serine 6 is required for mitotic chromosome segregation. J Cell Biol.

  144. Shoaib M, Walter D, Gillespie PJ, Izard F, Fahrenkrog B, Lleres D, Lerdrup M, Johansen JV, Hansen K, Julien E, Blow JJ, Sorensen CS (2018) Histone H4K20 methylation mediated chromatin compaction threshold ensures genome integrity by limiting DNA replication licensing. Nat Commun 9:3704

    PubMed  PubMed Central  Google Scholar 

  145. Sidler C, Kovalchuk O, Kovalchuk I (2017) Epigenetic regulation of cellular senescence and aging. Front Genet 8:138

    PubMed  PubMed Central  Google Scholar 

  146. Simon JA, Kingston RE (2013) Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol Cell 49:808–824

    PubMed  PubMed Central  CAS  Google Scholar 

  147. Smeenk G, Mailand N (2016) Writers, readers, and erasers of histone ubiquitylation in DNA double-strand break repair. Front Genet 7:122

    PubMed  PubMed Central  Google Scholar 

  148. Smurova K, De Wulf P (2018) Centromere and pericentromere transcription: roles and regulation in sickness and in health. Front Genet 9:674

    PubMed  PubMed Central  CAS  Google Scholar 

  149. Srivastava S, Foltz DR (2018) Posttranslational modifications of CENP-A: marks of distinction. Chromosoma 127:279–290

    PubMed  PubMed Central  CAS  Google Scholar 

  150. Steger DJ, Lefterova MI, Ying L, Stonestrom AJ, Schupp M, Zhuo D, Vakoc AL, Kim JE, Chen J, Lazar MA, Blobel GA, Vakoc CR (2008) DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol Cell Biol 28:2825–2839

    PubMed  PubMed Central  CAS  Google Scholar 

  151. Stellfox ME, Bailey AO, Foltz DR (2013) Putting CENP-A in its place. Cell Mol Life Sci 70:387–406

    PubMed  CAS  Google Scholar 

  152. Stender JD, Pascual G, Liu W, Kaikkonen MU, Do K, Spann NJ, Boutros M, Perrimon N, Rosenfeld MG, Glass CK (2012) Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20. Mol Cell 48:28–38

    PubMed  PubMed Central  CAS  Google Scholar 

  153. Stimpson KM, Sullivan BA (2011) Histone H3K4 methylation keeps centromeres open for business. EMBO J 30:233–234

    PubMed  PubMed Central  CAS  Google Scholar 

  154. Sun L, Huang Y, Wei Q, Tong X, Cai R, Nalepa G, Ye X (2015) Cyclin E-CDK2 protein phosphorylates plant homeodomain finger protein 8 (PHF8) and regulates its function in the cell cycle. J Biol Chem 290:4075–4085

    PubMed  CAS  Google Scholar 

  155. Sweet SM, Li M, Thomas PM, Durbin KR, Kelleher NL (2010) Kinetics of re-establishing H3K79 methylation marks in global human chromatin. J Biol Chem 285:32778–32786

    PubMed  PubMed Central  CAS  Google Scholar 

  156. Tada K, Susumu H, Sakuno T, Watanabe Y (2011) Condensin association with histone H2A shapes mitotic chromosomes. Nature 474:477–483

    PubMed  CAS  Google Scholar 

  157. Talasz H, Lindner HH, Sarg B, Helliger W (2005) Histone H4-lysine 20 monomethylation is increased in promoter and coding regions of active genes and correlates with hyperacetylation. J Biol Chem 280:38814–38822

    PubMed  CAS  Google Scholar 

  158. Tardat M, Murr R, Herceg Z, Sardet C, Julien E (2007) PR-Set7-dependent lysine methylation ensures genome replication and stability through S phase. J Cell Biol 179:1413–1426

    PubMed  PubMed Central  CAS  Google Scholar 

  159. Trojer P, Li G, Sims RJ 3rd, Vaquero A, Kalakonda N, Boccuni P, Lee D, Erdjument-Bromage H, Tempst P, Nimer SD, Wang YH, Reinberg D (2007) L3MBTL1, a histone-methylation-dependent chromatin lock. Cell 129:915–928

    PubMed  CAS  Google Scholar 

  160. Tsukahara T, Tanno Y, Watanabe Y (2010) Phosphorylation of the CPC by Cdk1 promotes chromosome bi-orientation. Nature 467:719–723

    PubMed  CAS  Google Scholar 

  161. Valls E, Sanchez-Molina S, Martinez-Balbas MA (2005) Role of histone modifications in marking and activating genes through mitosis. J Biol Chem 280:42592–42600

    PubMed  CAS  Google Scholar 

  162. van Nuland R, Gozani O (2016) Histone H4 Lysine 20 (H4K20) Methylation, expanding the signaling potential of the proteome one methyl moiety at a time. Mol Cell Proteomics 15:755–764

    PubMed  Google Scholar 

  163. van Wely KH, Mora Gallardo C, Vann KR, Kutateladze TG (2017) Epigenetic countermarks in mitotic chromosome condensation. Nucleus 8:144–149

    PubMed  PubMed Central  Google Scholar 

  164. Varier RA, Outchkourov NS, de Graaf P, van Schaik FM, Ensing HJ, Wang F, Higgins JM, Kops GJ, Timmers HT (2010) A phospho/methyl switch at histone H3 regulates TFIID association with mitotic chromosomes. EMBO J 29:3967–3978

    PubMed  PubMed Central  CAS  Google Scholar 

  165. Venkatesh S, Workman JL (2015) Histone exchange, chromatin structure and the regulation of transcription. Nat Rev Mol Cell Biol 16:178–189

    PubMed  CAS  Google Scholar 

  166. Vermeulen M, Mulder KW, Denissov S, Pijnappel WW, van Schaik FM, Varier RA, Baltissen MP, Stunnenberg HG, Mann M, Timmers HT (2007) Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131:58–69

    PubMed  CAS  Google Scholar 

  167. Vlaming H, van Leeuwen F (2016) The upstreams and downstreams of H3K79 methylation by DOT1L. Chromosoma 125:593–605

    PubMed  CAS  Google Scholar 

  168. Wagner EJ, Carpenter PB (2012) Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol 13:115–126

    PubMed  PubMed Central  CAS  Google Scholar 

  169. Wang F, Higgins JM (2013) Histone modifications and mitosis: countermarks, landmarks, and bookmarks. Trends Cell Biol 23:175–184

    PubMed  CAS  Google Scholar 

  170. Wang F, Dai J, Daum JR, Niedzialkowska E, Banerjee B, Stukenberg PT, Gorbsky GJ, Higgins JM (2010) Histone H3 Thr-3 phosphorylation by Haspin positions Aurora B at centromeres in mitosis. Science 330:231–235

    PubMed  PubMed Central  CAS  Google Scholar 

  171. Wang F, Ulyanova NP, van der Waal MS, Patnaik D, Lens SM, Higgins JM (2011) A positive feedback loop involving Haspin and Aurora B promotes CPC accumulation at centromeres in mitosis. Curr Biol 21:1061–1069

    PubMed  PubMed Central  CAS  Google Scholar 

  172. Wang F, Ulyanova NP, Daum JR, Patnaik D, Kateneva AV, Gorbsky GJ, Higgins JM (2012) Haspin inhibitors reveal centromeric functions of Aurora B in chromosome segregation. J Cell Biol 199:251–268

    PubMed  PubMed Central  CAS  Google Scholar 

  173. Wang K, Yu Z, Liu Y, Li G (2017) Ser68 Phosphorylation ensures accurate cell-cycle-dependent CENP-A deposition at centromeres. Dev Cell 40:5–6

    PubMed  CAS  Google Scholar 

  174. Weake VM, Workman JL (2008) Histone ubiquitination: triggering gene activity. Mol Cell 29:653–663

    PubMed  CAS  Google Scholar 

  175. Wilkins BJ, Rall NA, Ostwal Y, Kruitwagen T, Hiragami-Hamada K, Winkler M, Barral Y, Fischle W, Neumann H (2014) A cascade of histone modifications induces chromatin condensation in mitosis. Science 343:77–80

    PubMed  CAS  Google Scholar 

  176. Wood K, Tellier M, Murphy S (2018) DOT1L and H3K79 Methylation in transcription and genomic stability. Biomolecules 8:11.

  177. Woodcock CL, Ghosh RP (2010) Chromatin higher-order structure and dynamics. Cold Spring Harb Perspect Biol 2:a000596

    PubMed  PubMed Central  Google Scholar 

  178. Wu R, Terry AV, Singh PB, Gilbert DM (2005) Differential subnuclear localization and replication timing of histone H3 lysine 9 methylation states. Mol Biol Cell 16:2872–2881

    PubMed  PubMed Central  CAS  Google Scholar 

  179. Wu S, Wang W, Kong X, Congdon LM, Yokomori K, Kirschner MW, Rice JC (2010) Dynamic regulation of the PR-Set7 histone methyltransferase is required for normal cell cycle progression. Genes Dev 24:2531–2542

    PubMed  PubMed Central  CAS  Google Scholar 

  180. Wu R, Wang Z, Zhang H, Gan H, Zhang Z (2017) H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication. Nucleic Acids Res 45:169–180

    PubMed  CAS  Google Scholar 

  181. Xu D, Bai J, Duan Q, Costa M, Dai W (2009) Covalent modifications of histones during mitosis and meiosis. Cell Cycle 8:3688–3694

    PubMed  CAS  Google Scholar 

  182. Xu Y, Zhang S, Lin S, Guo Y, Deng W, Zhang Y, Xue Y (2017) WERAM: a database of writers, erasers and readers of histone acetylation and methylation in eukaryotes. Nucleic Acids Res 45:D264–D270

    PubMed  CAS  Google Scholar 

  183. Yamada HY, Gorbsky GJ (2006) Spindle checkpoint function and cellular sensitivity to antimitotic drugs. Mol Cancer Ther 5:2963–2969

    PubMed  PubMed Central  CAS  Google Scholar 

  184. Yamagishi Y, Honda T, Tanno Y, Watanabe Y (2010) Two histone marks establish the inner centromere and chromosome bi-orientation. Science 330:239–243

    PubMed  CAS  Google Scholar 

  185. Yang H, Mizzen CA (2009) The multiple facets of histone H4-lysine 20 methylation. Biochem Cell Biol 87:151–161

    PubMed  CAS  Google Scholar 

  186. Yuan W, Xu M, Huang C, Liu N, Chen S, Zhu B (2011) H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J Biol Chem 286:7983–7989

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank all authors of the works referenced in this article, and apologize that we cannot list all of them due to space limitations. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (2018R1A2A2A05022043).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ja-Eun Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, JE. Bookmarking by histone methylation ensures chromosomal integrity during mitosis. Arch. Pharm. Res. 42, 466–480 (2019). https://doi.org/10.1007/s12272-019-01156-7

Download citation

Keywords

  • Histone modification
  • Histone methylation
  • Epigenetics
  • Cell cycle
  • Mitosis
  • Chromosomal stability