Archives of Pharmacal Research

, Volume 42, Issue 8, pp 672–683 | Cite as

Camptothecin activates SIRT1 to promote lipid catabolism through AMPK/FoxO1/ATGL pathway in C2C12 myogenic cells

  • Mei-Chen Lo
  • Jia-Yin Chen
  • Yung-Ting Kuo
  • Wei-Lu Chen
  • Horng-Mo Lee
  • Shyang-Guang WangEmail author
Research Article


Caloric restriction activates sirtuin 1 (SIRT1) and induces a variety of metabolic effects that are beneficial for preventing age-related disease. The present study screened a commercially available used drug library to develop small molecule activators of SIRT1 as therapeutics for treatment of metabolic disorders. Using an in vitro fluorescence assay, the cancer therapeutic camptothecin increased SIRT1 enzymatic activity by 5.5-fold, indicating it to be a potent SIRT1 activator. Camptothecin also elevated the nicotinamide adenine dinucleotide (NAD)+/NADH ratio and increased SIRT1 protein levels in differentiated C2C12 myogenic cells. Treatment of C2C12 myotubes with camptothecin increased phosphorylation of AMP-dependent kinase (AMPK) and acetyl-coenzyme A carboxylase, caused nuclear translocation and deacetylation of forkhead box O1 (FoxO1), increased transcription and protein expression of adipose triglyceride lipase (ATGL), decreased the amount of intracellular oil droplets, and significantly increased β-oxidation of fatty acids. These in vitro data were confirmed in vivo as camptothecin treatment of C57BL/6J mice reduced fat and plasma triglyceride levels. All of the above camptothecin-induced alterations were attenuated by the SIRT1-specific inhibitor nicotinamide and/or 6-[4-(2-piperidin-1-ylethoxy) phenyl]-3-pyridin-4-ylpyrazolo [1,5-a]pyrimidin (compound C). Thus, camptothecin activation of SIRT1 promotes lipid catabolism through AMPK/FoxO1/ATGL signaling.


Camptothecin SIRT1 AMP-activated protein kinase Adipose triglyceride lipase 



This work was supported by research grants from Central Taiwan University of Science and Technology (Grant No. PTH10026 to S.-G.W.) and the  Ministry of Science and Technology of Taiwan (Grant Nos. MOST-104-2320-B-038-064 and MOST-101-2320-B-166-001-MY3 to H.-M.L.).

Compliance with ethical standard

Conflict of interest

The authors declare no conflicts of interest.


  1. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506CrossRefPubMedGoogle Scholar
  2. Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73:417–435CrossRefPubMedGoogle Scholar
  3. Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvari M, Piper MD, Hoddinott M, Sutphin GL, Leko V, Mcelwee JJ, Vazquez-Manrique RP, Orfila AM, Ackerman D, Au C, Vinti G, Riesen M, Howard K, Neri C, Bedalov A, Kaeberlein M, Soti C, Partridge L, Gems D (2011) Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477:482–485CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chakrabarti P, English T, Karki S, Qiang L, Tao R, Kim J, Luo Z, Farmer SR, Kandror KV (2011) SIRT1 controls lipolysis in adipocytes via FOXO1-mediated expression of ATGL. J Lipid Res 52:1693–1701CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chen WL, Chen YL, Chiang YM, Wang SG, Lee HM (2012a) Fenofibrate lowers lipid accumulation in myotubes by modulating the PPARalpha/AMPK/FoxO1/ATGL pathway. Biochem Pharmacol 84:522–531CrossRefPubMedGoogle Scholar
  6. Chen WL, Kang CH, Wang SG, Lee HM (2012b) alpha-Lipoic acid regulates lipid metabolism through induction of sirtuin 1 (SIRT1) and activation of AMP-activated protein kinase. Diabetologia 55:1824–1835CrossRefPubMedGoogle Scholar
  7. Chen S, Zhao Z, Ke L, Li Z, Li W, Zhang Z, Zhou Y, Feng X, Zhu W (2018) Resveratrol improves glucose uptake in insulin-resistant adipocytes via Sirt1. J Nutr Biochem 55:209–218CrossRefPubMedGoogle Scholar
  8. Colak Y, Ozturk O, Senates E, Tuncer I, Yorulmaz E, Adali G, Doganay L, Enc FY (2011) SIRT1 as a potential therapeutic target for treatment of nonalcoholic fatty liver disease. Med Sci Monit 17:HY5–HY9CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dasgupta B, Milbrandt J (2007) Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci USA 104:7217–7222CrossRefPubMedGoogle Scholar
  10. Frescas D, Valenti L, Accili D (2005) Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem 280:20589–20595CrossRefPubMedGoogle Scholar
  11. Fry JL, Al Sayah L, Weisbrod RM, Van Roy I, Weng X, Cohen RA, Bachschmid MM, Seta F (2016) Vascular smooth muscle sirtuin-1 protects against diet-induced aortic stiffness. Hypertension 68:775–784CrossRefPubMedPubMedCentralGoogle Scholar
  12. Heo MG, Choung SY (2018) Anti-obesity effects of Spirulina maxima in high fat diet induced obese rats via the activation of AMPK pathway and SIRT1. Food Funct 9:4906–4915CrossRefPubMedGoogle Scholar
  13. Hoshino S, Kobayashi M, Higami Y (2018) Mechanisms of the anti-aging and prolongevity effects of caloric restriction: evidence from studies of genetically modified animals. Aging (Albany NY) 10:2243–2251CrossRefGoogle Scholar
  14. Hou X, Xu S, Maitland-Toolan KA, Sato K, Jiang B, Ido Y, Lan F, Walsh K, Wierzbicki M, Verbeuren TJ, Cohen RA, Zang M (2008) SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem 283:20015–20026CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hsiang YH, Hertzberg R, Hecht S, Liu LF (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260:14873–14878PubMedGoogle Scholar
  16. Huang CH, Shiu SM, Wu MT, Chen WL, Wang SG, Lee HM (2013) Monacolin K affects lipid metabolism through SIRT1/AMPK pathway in HepG2 cells. Arch Pharm Res 36:1541–1551CrossRefPubMedGoogle Scholar
  17. Hubbard BP, Sinclair DA (2014) Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol Sci 35:146–154CrossRefPubMedPubMedCentralGoogle Scholar
  18. Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800CrossRefPubMedGoogle Scholar
  19. Lomb DJ, Laurent G, Haigis MC (2010) Sirtuins regulate key aspects of lipid metabolism. Biochim Biophys Acta 1804:1652–1657CrossRefPubMedGoogle Scholar
  20. Mcvey M, Kaeberlein M, Tissenbaum HA, Guarente L (2001) The short life span of Saccharomyces cerevisiae sgs1 and srs2 mutants is a composite of normal aging processes and mitotic arrest due to defective recombination. Genetics 157:1531–1542PubMedPubMedCentralGoogle Scholar
  21. Mercken EM, Mitchell SJ, Martin-Montalvo A, Minor RK, Almeida M, Gomes AP, Scheibye-Knudsen M, Palacios HH, Licata JJ, Zhang Y, Becker KG, Khraiwesh H, Gonzalez-Reyes JA, Villalba JM, Baur JA, Elliott P, Westphal C, Vlasuk GP, Ellis JL, Sinclair DA, Bernier M, De Cabo R (2014) SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass. Aging Cell 13:787–796CrossRefPubMedPubMedCentralGoogle Scholar
  22. Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, Bemis JE, Xie R, Disch JS, Ng PY, Nunes JJ, Lynch AV, Yang H, Galonek H, Israelian K, Choy W, Iffland A, Lavu S, Medvedik O, Sinclair DA, Olefsky JM, Jirousek MR, Elliott PJ, Westphal CH (2007) Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450:712–716CrossRefPubMedPubMedCentralGoogle Scholar
  23. Morris BJ (2013) Seven sirtuins for seven deadly diseases of aging. Free Radic Biol Med 56:133–171CrossRefPubMedGoogle Scholar
  24. Nunes JJ, Milne J, Bemis J, Xie R, Vu CB, Ng P, and Disch J:US20070043050A1 (2007a)Google Scholar
  25. Nunes JJ, Milne J, Bemis J, Xie R, Vu CB, Ng P, Disch J, Salzmann T, and Armistead D:US20070037810A1 (2007b)Google Scholar
  26. Park CE, Kim MJ, Lee JH, Min BI, Bae H, Choe W, Kim SS, Ha J (2007) Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinase. Exp Mol Med 39:222–229CrossRefPubMedGoogle Scholar
  27. Pillarisetti S (2008) A review of Sirt1 and Sirt1 modulators in cardiovascular and metabolic diseases. Recent Pat Cardiovasc Drug Discov 3:156–164CrossRefPubMedGoogle Scholar
  28. Purushotham A, Schug TT, Li X (2009) SIRT1 performs a balancing act on the tight-rope toward longevity. Aging (Albany NY) 1:669–673CrossRefGoogle Scholar
  29. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118CrossRefPubMedGoogle Scholar
  30. Ulukan H, Swaan PW (2002) Camptothecins: a review of their chemotherapeutic potential. Drugs 62:2039–2057CrossRefPubMedGoogle Scholar
  31. Venkatasubramanian S, Noh RM, Daga S, Langrish JP, Mills NL, Waterhouse BR, Hoffmann E, Jacobson EW, Lang NN, Frier BM, Newby DE (2016) Effects of the small molecule SIRT1 activator, SRT2104 on arterial stiffness in otherwise healthy cigarette smokers and subjects with type 2 diabetes mellitus. Open Heart 3:e000402CrossRefPubMedPubMedCentralGoogle Scholar
  32. Wall ME, Wani MC, Cook CE, Palmer KH, Mcphail AT, Sim GA (1966) Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata 1,2. J Am Chem Soc 88:3888–3890CrossRefGoogle Scholar
  33. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689CrossRefPubMedGoogle Scholar
  34. Zang M, Xu S, Maitland-Toolan KA, Zuccollo A, Hou X, Jiang B, Wierzbicki M, Verbeuren TJ, Cohen RA (2006) Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 55:2180–2191CrossRefPubMedGoogle Scholar
  35. Zang Y, Fan L, Chen J, Huang R, Qin H (2018) Improvement of lipid and glucose metabolism by capsiate in palmitic acid-treated HepG2 cells via activation of the AMPK/SIRT1 signaling pathway. J Agric Food Chem 66:6772–6781CrossRefPubMedGoogle Scholar
  36. Zendedel E, Butler AE, Atkin SL, Sahebkar A (2018) Impact of curcumin on sirtuins: a review. J Cell Biochem 119:10291–10300CrossRefPubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2019

Authors and Affiliations

  1. 1.Department of Pediatrics, Shuang Ho HospitalTaipei Medical UniversityTaipeiTaiwan
  2. 2.Department of NursingCentral Taiwan University of Science and TechnologyTaichungTaiwan
  3. 3.Institute of Medical BiotechnologyCentral Taiwan University of Science and TechnologyTaichungTaiwan
  4. 4.Department of Pediatrics, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
  5. 5.Department of Medical Laboratory Science and Biotechnology, College of Medical Science and TechnologyTaipei Medical UniversityTaipeiTaiwan
  6. 6.Department of Medical Laboratory Science and BiotechnologyCentral Taiwan University of Science and TechnologyTaichungTaiwan

Personalised recommendations