Skip to main content
Log in

Differential effect of LPS and paclitaxel on microglial functional phenotypes and circulating cytokines: the possible role of CX3CR1 and IL-4/10 in blocking persistent inflammation

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Neuroinflammation plays a role in cancer chemotherapy-induced chronic pain. Thus far, most studies have focused on neuroinflammation suppression. However, there are limited reports of which factor is involved in the transition from acute inflammation to chronic inflammation, resulting in neuroinflammation and chronic pain. Here, we compared the inflammatory reaction and pain response induced by LPS and paclitaxel. LPS (0.5 mg/kg) or paclitaxel (2 mg/kg/day for 5 days) was administered intraperitoneally to mice, and mechanical allodynia was examined by von Frey test. LPS induced transient mechanical allodynia, whereas paclitaxel induced persistent mechanical allodynia. The CD86/CX3CR1 ratio remained unchanged due to CX3CR1 elevation following LPS injection, whereas the ratio was increased on day 1 after paclitaxel injection. LPS also increased CD45, CCL2, and CCL5 mRNA in the spinal cord and circulating pro- and anti-inflammatory cytokines 1 day after injection; however, the pattern was not consistent. Paclitaxel gradually increased inflammatory cytokines in the spinal cord. CX3CR1 might be involved in blocking the transition from acute pain to persistent pain in the LPS group. In addition, serum IL-4 and IL-10 elevation in the LPS group may be associated with chronic pain prevention. Therefore, targeting CX3CR1, IL-4, and IL-10 might be an alternative therapeutic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dombrowski S, Dutta R, Lee JC, Cook DN, Jung S, Lira SA, Littman DR, Ransohoff RM (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9:917–924

    Article  CAS  PubMed  Google Scholar 

  • Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63

    Article  CAS  PubMed  Google Scholar 

  • Corona AW, Norden DM, Skendelas JP, Huang Y, O’connor JC, Lawson M, Dantzer R, Kelley KW, Godbout JP (2013) Indoleamine 2,3-dioxygenase inhibition attenuates lipopolysaccharide induced persistent microglial activation and depressive-like complications in fractalkine receptor (CX(3)CR1)-deficient mice. Brain Behav Immun 31:134–142

    Article  CAS  PubMed  Google Scholar 

  • Cronk JC, Filiano AJ, Louveau A, Marin I, Marsh R, Ji E, Goldman DH, Smirnov I, Geraci N, Acton S, Overall CC, Kipnis J (2018) Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia. J Exp Med 215:1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eijkelkamp N, Steen-Louws C, Hartgring SA, Willemen HL, Prado J, Lafeber FP, Heijnen CJ, Hack CE, Van Roon JA, Kavelaars A (2016) IL4-10 fusion protein is a novel drug to treat persistent inflammatory pain. J Neurosci 36:7353–7363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geissmann F, Auffray C, Palframan R, Wirrig C, Ciocca A, Campisi L, Narni-Mancinelli E, Lauvau G (2008) Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T-cell responses. Immunol Cell Biol 86:398–408

    Article  CAS  PubMed  Google Scholar 

  • Grace PM, Hutchinson MR, Maier SF, Watkins LR (2014) Pathological pain and the neuroimmune interface. Nat Rev Immunol 14:217–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu N, Eyo UB, Murugan M, Peng J, Matta S, Dong H, Wu LJ (2016) Microglial P2Y12 receptors regulate microglial activation and surveillance during neuropathic pain. Brain Behav Immun 55:82–92

    Article  CAS  PubMed  Google Scholar 

  • Guo LH, Schluesener HJ (2006) Acute but not chronic stimulation of glial cells in rat spinal cord by systemic injection of lipopolysaccharide is associated with hyperalgesia. Acta Neuropathol 112:703–713

    Article  CAS  PubMed  Google Scholar 

  • Han A, Yeo H, Park MJ, Kim SH, Choi HJ, Hong CW, Kwon MS (2015) IL-4/10 prevents stress vulnerability following imipramine discontinuation. J Neuroinflammation 12:197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh CT, Lee YJ, Dai X, Ojeda NB, Lee HJ, Tien LT, Fan LW (2018) Systemic lipopolysaccharide-induced pain sensitivity and spinal inflammation were reduced by minocycline in neonatal rats. Int J Mol Sci. 4:5. https://doi.org/10.3390/ijms19102947

    Article  CAS  Google Scholar 

  • Jaggi AS, Singh N (2012) Mechanisms in cancer-chemotherapeutic drugs-induced peripheral neuropathy. Toxicology 291:1–9

    Article  CAS  PubMed  Google Scholar 

  • Ji RR, Xu ZZ, Gao YJ (2014) Emerging targets in neuroinflammation-driven chronic pain. Nat Rev Drug Discov 13:533–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johannes CB, Le TK, Zhou X, Johnston JA, Dworkin RH (2010) The prevalence of chronic pain in United States adults: results of an Internet-based survey. J Pain 11:1230–1239

    Article  PubMed  Google Scholar 

  • Kawasaki Y, Zhang L, Cheng JK, Ji RR (2008) Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci 28:5189–5194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kipnis J (2018) Immune system: the “seventh sense”. J Exp Med 215:397–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuner R (2010) Central mechanisms of pathological pain. Nat Med 16:1258–1266

    Article  CAS  PubMed  Google Scholar 

  • Kwilasz AJ, Grace PM, Serbedzija P, Maier SF, Watkins LR (2015) The therapeutic potential of interleukin-10 in neuroimmune diseases. Neuropharmacology 96:55–69

    Article  CAS  PubMed  Google Scholar 

  • Kwon MS, Seo YJ, Choi SM, Won MH, Lee JK, Park SH, Jung JS, Sim YB, Suh HW (2010) The time-dependent effect of lipopolysaccharide on kainic acid-induced neuronal death in hippocampal CA3 region: possible involvement of cytokines via glucocorticoid. Neuroscience 165:1333–1344

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang H, Zhang H, Kosturakis AK, Jawad AB, Dougherty PM (2014) Toll-like receptor 4 signaling contributes to Paclitaxel-induced peripheral neuropathy. J Pain 15:712–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Huang ZZ, Ling YZ, Wei JY, Cui Y, Zhang XZ, Zhu HQ, Xin WJ (2015) Up-regulation of CX3CL1 via nuclear factor-kappaB-dependent histone acetylation is involved in paclitaxel-induced peripheral neuropathy. Anesthesiology 122:1142–1151

    Article  CAS  PubMed  Google Scholar 

  • Limatola C, Ransohoff RM (2014) Modulating neurotoxicity through CX3CL1/CX3CR1 signaling. Front Cell Neurosci 8:229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CC, Lu N, Cui Y, Yang T, Zhao ZQ, Xin WJ, Liu XG (2010) Prevention of paclitaxel-induced allodynia by minocycline: effect on loss of peripheral nerve fibers and infiltration of macrophages in rats. Mol Pain 6:76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milligan E, Zapata V, Schoeniger D, Chacur M, Green P, Poole S, Martin D, Maier SF, Watkins LR (2005a) An initial investigation of spinal mechanisms underlying pain enhancement induced by fractalkine, a neuronally released chemokine. Eur J Neurosci 22:2775–2782

    Article  CAS  PubMed  Google Scholar 

  • Milligan ED, Langer SJ, Sloane EM, He L, Wieseler-Frank J, O’connor K, Martin D, Forsayeth JR, Maier SF, Johnson K, Chavez RA, Leinwand LA, Watkins LR (2005b) Controlling pathological pain by adenovirally driven spinal production of the anti-inflammatory cytokine, interleukin-10. Eur J Neurosci 21:2136–2148

    Article  PubMed  Google Scholar 

  • Montague K, Simeoli R, Valente J, Malcangio M (2018) A novel interaction between CX3CR1 and CCR2 signalling in monocytes constitutes an underlying mechanism for persistent vincristine-induced pain. J Neuroinflammation 15:101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noh MY, Lim SM, Oh KW, Cho KA, Park J, Kim KS, Lee SJ, Kwon MS, Kim SH (2016) Mesenchymal stem cells modulate the functional properties of microglia via TGF-beta secretion. Stem Cells Transl Med 5:1538–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Old EA, Nadkarni S, Grist J, Gentry C, Bevan S, Kim KW, Mogg AJ, Perretti M, Malcangio M (2014) Monocytes expressing CX3CR1 orchestrate the development of vincristine-induced pain. J Clin Invest 124:2023–2036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng J, Gu N, Zhou L, Eyo UB, Murugan M, Gan WB, Wu LJ (2016) Microglia and monocytes synergistically promote the transition from acute to chronic pain after nerve injury. Nat Commun 7:12029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pepe G, Calderazzi G, De Maglie M, Villa AM, Vegeto E (2014) Heterogeneous induction of microglia M2a phenotype by central administration of interleukin-4. J Neuroinflammation 11:211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saijo K, Glass CK (2011) Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 11:775–787

    Article  CAS  PubMed  Google Scholar 

  • Tsuda M, Inoue K, Salter MW (2005) Neuropathic pain and spinal microglia: a big problem from molecules in “small” glia. Trends Neurosci 28:101–107

    Article  CAS  PubMed  Google Scholar 

  • Yoon SY, Patel D, Dougherty PM (2012) Minocycline blocks lipopolysaccharide induced hyperalgesia by suppression of microglia but not astrocytes. Neuroscience 221:214–224

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Yoon SY, Zhang H, Dougherty PM (2012) Evidence that spinal astrocytes but not microglia contribute to the pathogenesis of Paclitaxel-induced painful neuropathy. J Pain 13:293–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Han A for constructive criticism. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2017R1C1B5018178).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong Wan Kim or Min-Soo Kwon.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, JW., You, MJ., Park, HS. et al. Differential effect of LPS and paclitaxel on microglial functional phenotypes and circulating cytokines: the possible role of CX3CR1 and IL-4/10 in blocking persistent inflammation. Arch. Pharm. Res. 42, 359–368 (2019). https://doi.org/10.1007/s12272-019-01137-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-019-01137-w

Keywords

Navigation