Skip to main content

Evolution of chimeric antigen receptor (CAR) T cell therapy: current status and future perspectives

Abstract

Engineering T cells with a chimeric antigen receptor (CAR) that reprograms their antigen selectivity and signaling has recently emerged as one of the most promising therapeutic approaches for treating cancers. For example, two CD19-specific CAR T cell (CAR-T) therapies have shown remarkable responses in patients with relapsed/refractory B-cell cancers, and were approved by the US Food and Drug Administration in 2017. This initial clinical success has spurred an explosion of interests in this novel therapy from both academia and industry, and results from basic and clinical research have enabled the rapid evolution of the CAR-T field. In this review, we describe the basic structure of the CAR and discuss how each of its domains affect the efficacy and safety of CAR-T therapies. In addition, we discuss some of the novel concepts and other considerations that are essential for ensuring the future success of CAR-T therapy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Almasbak H, Walseng E, Kristian A, Myhre MR, Suso EM, Munthe LA, Andersen JT, Wang MY, Kvalheim G, Gaudernack G, Kyte JA (2015) Inclusion of an IgG1-Fc spacer abrogates efficacy of CD19 CAR T cells in a xenograft mouse model. Gene Ther 22:391–403

    Article  CAS  PubMed  Google Scholar 

  • Batlevi CL, Matsuki E, Brentjens RJ, Younes A (2016) Novel immunotherapies in lymphoid malignancies. Nat Rev Clin Oncol 13:25–40

    Article  CAS  PubMed  Google Scholar 

  • Baumeister SH, Murad J, Werner L, Daley H, Trebeden-Negre H, Gicobi JK, Schmucker A, Reder J, Sentman CL, Gilham DE, Lehmann FF, Galinsky I, Dipietro H, Cummings K, Munshi NC, Stone RM, Neuberg DS, Soiffer R, Dranoff G, Ritz J, Nikiforow S (2019) Phase I Trial of Autologous CAR T Cells Targeting NKG2D Ligands in Patients with AML/MDS and Multiple Myeloma. Cancer Immunol Res 7:100–112

    Article  PubMed  Google Scholar 

  • Bridgeman JS, Hawkins RE, Bagley S, Blaylock M, Holland M, Gilham DE (2010) The optimal antigen response of chimeric antigen receptors harboring the CD3zeta transmembrane domain is dependent upon incorporation of the receptor into the endogenous TCR/CD3 complex. J Immunol 184:6938–6949

    Article  CAS  PubMed  Google Scholar 

  • Brown CE, Aguilar B, Starr R, Yang X, Chang WC, Weng L, Chang B, Sarkissian A, Brito A, Sanchez JF, Ostberg JR, D’apuzzo M, Badie B, Barish ME, Forman SJ (2018) Optimization of IL13Ralpha2-Targeted Chimeric Antigen Receptor T Cells for Improved Anti-tumor Efficacy against Glioblastoma. Mol Ther 26:31–44

    Article  CAS  PubMed  Google Scholar 

  • Call ME, Wucherpfennig KW (2007) Common themes in the assembly and architecture of activating immune receptors. Nat Rev Immunol 7:841–850

    Article  CAS  PubMed  Google Scholar 

  • Call ME, Pyrdol J, Wiedmann M, Wucherpfennig KW (2002) The organizing principle in the formation of the T cell receptor-CD3 complex. Cell 111:967–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro F, Cardoso AP, Goncalves RM, Serre K, Oliveira MJ (2018) Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front Immunol. https://doi.org/10.3389/fimmu.2018.00847

    Article  PubMed  PubMed Central  Google Scholar 

  • Davenport AJ, Cross RS, Watson KA, Liao Y, Shi W, Prince HM, Beavis PA, Trapani JA, Kershaw MH, Ritchie DS, Darcy PK, Neeson PJ, Jenkins MR (2018) Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity. Proc Natl Acad Sci USA 115:E2068–E2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis SJ, Van Der Merwe PA (2006) The kinetic-segregation model: TCR triggering and beyond. Nat Immunol 7:803–809

    Article  CAS  PubMed  Google Scholar 

  • Ellebrecht CT, Bhoj VG, Nace A, Choi EJ, Mao X, Cho MJ, Di Zenzo G, Lanzavecchia A, Seykora JT, Cotsarelis G, Milone MC, Payne AS (2016) Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353:179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eyquem J, Mansilla-Soto J, Giavridis T, Van Der Stegen SJ, Hamieh M, Cunanan KM, Odak A, Gonen M, Sadelain M (2017) Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543:113–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraietta JA, Lacey SF, Orlando EJ, Pruteanu-Malinici I, Gohil M, Lundh S, Boesteanu AC, Wang Y, O’connor RS, Hwang WT, Pequignot E, Ambrose DE, Zhang C, Wilcox N, Bedoya F, Dorfmeier C, Chen F, Tian L, Parakandi H, Gupta M, Young RM, Johnson FB, Kulikovskaya I, Liu L, Xu J, Kassim SH, Davis MM, Levine BL, Frey NV, Siegel DL, Huang AC, Wherry EJ, Bitter H, Brogdon JL, Porter DL, June CH, Melenhorst JJ (2018a) Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med 24:563–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraietta JA, Nobles CL, Sammons MA, Lundh S, Carty SA, Reich TJ, Cogdill AP, Morrissette JJD, Denizio JE, Reddy S, Hwang Y, Gohil M, Kulikovskaya I, Nazimuddin F, Gupta M, Chen F, Everett JK, Alexander KA, Lin-Shiao E, Gee MH, Liu X, Young RM, Ambrose D, Wang Y, Xu J, Jordan MS, Marcucci KT, Levine BL, Garcia KC, Zhao Y, Kalos M, Porter DL, Kohli RM, Lacey SF, Berger SL, Bushman FD, June CH, Melenhorst JJ (2018b) Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558:307–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghoneim HE, Zamora AE, Thomas PG, Youngblood BA (2016) Cell-intrinsic barriers of T cell-based immunotherapy. Trends Mol Med 22:1000–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross G, Waks T, Eshhar Z (1989) Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 86:10024–10028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guedan S, Chen X, Madar A, Carpenito C, Mcgettigan SE, Frigault MJ, Lee J, Posey AD Jr, Scholler J, Scholler N, Bonneau R, June CH (2014) ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells. Blood 124:1070–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guedan S, Posey AD Jr, Shaw C, Wing A, Da T, Patel PR, Mcgettigan SE, Casado-Medrano V, Kawalekar OU, Uribe-Herranz M, Song D, Melenhorst JJ, Lacey SF, Scholler J, Keith B, Young RM, June CH (2018) Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation. JCI Insight 1:1–10. https://doi.org/10.1172/jci.insight.96976

    Article  Google Scholar 

  • Guest RD, Hawkins RE, Kirillova N, Cheadle EJ, Arnold J, O’neill A, Irlam J, Chester KA, Kemshead JT, Shaw DM, Embleton MJ, Stern PL, Gilham DE (2005) The role of extracellular spacer regions in the optimal design of chimeric immune receptors: evaluation of four different scFvs and antigens. J Immunother 28:203–211

    Article  CAS  PubMed  Google Scholar 

  • Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J (2018) CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med 24:927–930

    Article  CAS  PubMed  Google Scholar 

  • Hamerman JA, Lanier LL (2006) Inhibition of immune responses by ITAM-bearing receptors. Sci STKE. https://doi.org/10.1126/stke.3202006re1

    Article  PubMed  Google Scholar 

  • Haso W, Lee DW, Shah NN, Stetler-Stevenson M, Yuan CM, Pastan IH, Dimitrov DS, Morgan RA, Fitzgerald DJ, Barrett DM, Wayne AS, Mackall CL, Orentas RJ (2013) Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood 121:1165–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heuser C, Hombach A, Losch C, Manista K, Abken H (2003) T-cell activation by recombinant immunoreceptors: impact of the intracellular signalling domain on the stability of receptor expression and antigen-specific activation of grafted T cells. Gene Ther 10:1408–1419

    Article  CAS  PubMed  Google Scholar 

  • Hudecek M, Sommermeyer D, Kosasih PL, Silva-Benedict A, Liu L, Rader C, Jensen MC, Riddell SR (2015) The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol Res 3:125–135

    Article  CAS  PubMed  Google Scholar 

  • Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, Kommineni S, Chen J, Sondey M, Ye C, Randhawa R, Kulkarni T, Yang Z, Mcallister G, Russ C, Reece-Hoyes J, Forrester W, Hoffman GR, Dolmetsch R, Kaykas A (2018) p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med 24:939–946

    Article  CAS  PubMed  Google Scholar 

  • James JR (2018) Tuning ITAM multiplicity on T cell receptors can control potency and selectivity to ligand density. Sci Signal 1:1–10. https://doi.org/10.1126/scisignal.aan1088

    Article  CAS  Google Scholar 

  • Jiang T, Zhou C, Ren S (2016) Role of IL-2 in cancer immunotherapy. Oncoimmunology 5:e1163462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juillerat A, Marechal A, Filhol JM, Valton J, Duclert A, Poirot L, Duchateau P (2016) Design of chimeric antigen receptors with integrated controllable transient functions. Sci Rep. https://doi.org/10.1038/srep18950

    Article  PubMed  PubMed Central  Google Scholar 

  • Kebriaei P, Singh H, Huls MH, Figliola MJ, Bassett R, Olivares S, Jena B, Dawson MJ, Kumaresan PR, Su S, Maiti S, Dai J, Moriarity B, Forget MA, Senyukov V, Orozco A, Liu T, Mccarty J, Jackson RN, Moyes JS, Rondon G, Qazilbash M, Ciurea S, Alousi A, Nieto Y, Rezvani K, Marin D, Popat U, Hosing C, Shpall EJ, Kantarjian H, Keating M, Wierda W, Do KA, Largaespada DA, Lee DA, Hackett PB, Champlin RE, Cooper LJ (2016) Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. J Clin Invest 126:3363–3376

    Article  PubMed  PubMed Central  Google Scholar 

  • Kenderian SS, Porter DL, Gill S (2017) Chimeric antigen receptor T cells and hematopoietic cell transplantation: how not to put the cart before the horse. Biol Blood Marrow Transplant 23:235–246

    Article  CAS  PubMed  Google Scholar 

  • Kersh EN, Shaw AS, Allen PM (1998) Fidelity of T cell activation through multistep T cell receptor zeta phosphorylation. Science 281:572–575

    Article  CAS  PubMed  Google Scholar 

  • Kersh EN, Kersh GJ, Allen PM (1999) Partially phosphorylated T cell receptor zeta molecules can inhibit T cell activation. J Exp Med 190:1627–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klebanoff CA, Crompton JG, Leonardi AJ, Yamamoto TN, Chandran SS, Eil RL, Sukumar M, Vodnala SK, Hu J, Ji Y, Clever D, Black MA, Gurusamy D, Kruhlak MJ, Jin P, Stroncek DF, Gattinoni L, Feldman SA, Restifo NP (2017) Inhibition of AKT signaling uncouples T cell differentiation from expansion for receptor-engineered adoptive immunotherapy. JCI Insight. https://doi.org/10.1172/jci.insight.95103

    Article  PubMed  PubMed Central  Google Scholar 

  • Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36:765–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamers CH, Willemsen R, Van Elzakker P, Van Steenbergen-Langeveld S, Broertjes M, Oosterwijk-Wakka J, Oosterwijk E, Sleijfer S, Debets R, Gratama JW (2011) Immune responses to transgene and retroviral vector in patients treated with ex vivo-engineered T cells. Blood 117:72–82

    Article  CAS  PubMed  Google Scholar 

  • Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, Fry TJ, Orentas R, Sabatino M, Shah NN, Steinberg SM, Stroncek D, Tschernia N, Yuan C, Zhang H, Zhang L, Rosenberg SA, Wayne AS, Mackall CL (2015) T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385:517–528

    Article  CAS  PubMed  Google Scholar 

  • Lesterhuis WJ, Haanen JB, Punt CJ (2011) Cancer immunotherapy–revisited. Nat Rev Drug Discov 10:591–600

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Jiang S, Fang C, Yang S, Olalere D, Pequignot EC, Cogdill AP, Li N, Ramones M, Granda B, Zhou L, Loew A, Young RM, June CH, Zhao Y (2015) Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice. Cancer Res 75:3596–3607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Ranganathan R, Jiang S, Fang C, Sun J, Kim S, Newick K, Lo A, June CH, Zhao Y, Moon EK (2016) A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T Cells in advanced solid tumors. Cancer Res 76:1578–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, Smith JP, Walker AJ, Kohler ME, Venkateshwara VR, Kaplan RN, Patterson GH, Fry TJ, Orentas RJ, Mackall CL (2015) 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 21:581–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JS, Kim JY, Kazane SA, Choi SH, Yun HY, Kim MS, Rodgers DT, Pugh HM, Singer O, Sun SB, Fonslow BR, Kochenderfer JN, Wright TM, Schultz PG, Young TS, Kim CH, Cao Y (2016) Versatile strategy for controlling the specificity and activity of engineered T cells. Proc Natl Acad Sci USA 113:E450–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macdonald KG, Hoeppli RE, Huang Q, Gillies J, Luciani DS, Orban PC, Broady R, Levings MK (2016) Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J Clin Invest 126:1413–1424

    Article  PubMed  PubMed Central  Google Scholar 

  • Maus MV, Haas AR, Beatty GL, Albelda SM, Levine BL, Liu X, Zhao Y, Kalos M, June CH (2013) T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol Res 1:26–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammed S, Sukumaran S, Bajgain P, Watanabe N, Heslop HE, Rooney CM, Brenner MK, Fisher WE, Leen AM, Vera JF (2017) Improving chimeric antigen receptor-modified T cell function by reversing the immunosuppressive tumor microenvironment of pancreatic cancer. Mol Ther 25:249–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18:843–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moritz D, Groner B (1995) A spacer region between the single chain antibody- and the CD3 zeta-chain domain of chimeric T cell receptor components is required for efficient ligand binding and signaling activity. Gene Ther 2:539–546

    CAS  PubMed  Google Scholar 

  • Morrissey MA, Williamson AP, Steinbach AM, Roberts EW, Kern N, Headley MB, Vale RD (2018) Chimeric antigen receptors that trigger phagocytosis. Elife 1:1–10. https://doi.org/10.7554/elife.36688

    Article  Google Scholar 

  • Newick K, O’brien S, Moon E, Albelda SM (2017) CAR T Cell Therapy for Solid Tumors. Annu Rev Med 68:139–152

    Article  CAS  PubMed  Google Scholar 

  • Patel SD, Moskalenko M, Smith D, Maske B, Finer MH, Mcarthur JG (1999) Impact of chimeric immune receptor extracellular protein domains on T cell function. Gene Ther 6:412–419

    Article  CAS  PubMed  Google Scholar 

  • Qasim W, Zhan H, Samarasinghe S, Adams S, Amrolia P, Stafford S, Butler K, Rivat C, Wright G, Somana K, Ghorashian S, Pinner D, Ahsan G, Gilmour K, Lucchini G, Inglott S, Mifsud W, Chiesa R, Peggs KS, Chan L, Farzeneh F, Thrasher AJ, Vora A, Pule M, Veys P (2017) Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aaj2013

    Article  PubMed  Google Scholar 

  • Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y (2017) Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res 23:2255–2266

    Article  CAS  PubMed  Google Scholar 

  • Rodgers DT, Mazagova M, Hampton EN, Cao Y, Ramadoss NS, Hardy IR, Schulman A, Du J, Wang F, Singer O, Ma J, Nunez V, Shen J, Woods AK, Wright TM, Schultz PG, Kim CH, Young TS (2016) Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies. Proc Natl Acad Sci USA 113:E459–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth TL, Puig-Saus C, Yu R, Shifrut E, Carnevale J, Li PJ, Hiatt J, Saco J, Krystofinski P, Li H, Tobin V, Nguyen DN, Lee MR, Putnam AL, Ferris AL, Chen JW, Schickel JN, Pellerin L, Carmody D, Alkorta-Aranburu G, Del Gaudio D, Matsumoto H, Morell M, Mao Y, Cho M, Quadros RM, Gurumurthy CB, Smith B, Haugwitz M, Hughes SH, Weissman JS, Schumann K, Esensten JH, May AP, Ashworth A, Kupfer GM, SaW Greeley, Bacchetta R, Meffre E, Roncarolo MG, Romberg N, Herold KC, Ribas A, Leonetti MD, Marson A (2018) Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559:405–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saudemont A, Jespers L, Clay T (2018) Current status of gene engineering cell therapeutics. Front Immunol 9:153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommermeyer D, Hill T, Shamah SM, Salter AI, Chen Y, Mohler KM, Riddell SR (2017) Fully human CD19-specific chimeric antigen receptors for T-cell therapy. Leukemia 31:2191–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Themeli M, Kloss CC, Ciriello G, Fedorov VD, Perna F, Gonen M, Sadelain M (2013) Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat Biotechnol 31:928–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turtle CJ, Hanafi LA, Berger C, Gooley TA, Cherian S, Hudecek M, Sommermeyer D, Melville K, Pender B, Budiarto TM, Robinson E, Steevens NN, Chaney C, Soma L, Chen X, Yeung C, Wood B, Li D, Cao J, Heimfeld S, Jensen MC, Riddell SR, Maloney DG (2016) CD19 CAR-T cells of defined CD4 + :CD8 + composition in adult B cell ALL patients. J Clin Invest 126:2123–2138

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Der Stegen SJ, Hamieh M, Sadelain M (2015) The pharmacology of second-generation chimeric antigen receptors. Nat Rev Drug Discov 14:499–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan Z, Shao X, Ji X, Dong L, Wei J, Xiong Z, Liu W, Qi H (2018) Transmembrane domain-mediated Lck association underlies bystander and costimulatory ICOS signaling. Cell Mol Immunol. https://doi.org/10.1038/s41423-018-0183-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang R, Natarajan K, Margulies DH (2009) Structural basis of the CD8 alpha beta/MHC class I interaction: focused recognition orients CD8 beta to a T cell proximal position. J Immunol 183:2554–2564

    Article  CAS  PubMed  Google Scholar 

  • Wang E, Wang LC, Tsai CY, Bhoj V, Gershenson Z, Moon E, Newick K, Sun J, Lo A, Baradet T, Feldman MD, Barrett D, Pure E, Albelda S, Milone MC (2015) Generation of potent T-cell immunotherapy for cancer using DAP12-based, multichain, chimeric immunoreceptors. Cancer Immunol Res 3:815–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkie S, Picco G, Foster J, Davies DM, Julien S, Cooper L, Arif S, Mather SJ, Taylor-Papadimitriou J, Burchell JM, Maher J (2008) Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J Immunol 180:4901–4909

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Zhang M, Ramos CA, Durett A, Liu E, Dakhova O, Liu H, Creighton CJ, Gee AP, Heslop HE, Rooney CM, Savoldo B, Dotti G (2014) Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood 123:3750–3759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Wang QJ, Yang S, Kochenderfer JN, Zheng Z, Zhong X, Sadelain M, Eshhar Z, Rosenberg SA, Morgan RA (2009) A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J Immunol 183:5563–5574

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Condomines M, Van Der Stegen SJC, Perna F, Kloss CC, Gunset G, Plotkin J, Sadelain M (2015) Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T Cells. Cancer Cell 28:415–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Ministry of Science & ICT (2014M3A9D8032525).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan Hyuk Kim.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, YH., Kim, C.H. Evolution of chimeric antigen receptor (CAR) T cell therapy: current status and future perspectives. Arch. Pharm. Res. 42, 607–616 (2019). https://doi.org/10.1007/s12272-019-01136-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-019-01136-x

Keywords

  • Chimeric antigen receptor
  • CAR-T therapy
  • CAR design
  • Cancer immunotherapy