Skip to main content
Log in

Diverse roles of noncoding RNAs in vascular calcification

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Vascular calcification occurs when calcium phosphate crystals are abnormally deposited in the vessel walls, thus hardening and narrowing the arteries. This condition is commonly observed in patients with diseases such as atherosclerosis, chronic kidney disease, diabetes, and cardiovascular diseases. Despite many studies being conducted, the molecular mechanism involved in vascular calcification is unknown. From recent studies, it is clear that several types of noncoding RNAs are involved in human diseases. It has also been shown that the noncoding RNAs, including microRNAs, long noncoding RNAs, and circular RNAs, are involved in the progression of vascular calcification. With the development of therapeutic approaches based on the manipulation of noncoding RNAs, it is speculated that the modulation of these molecules could be another strategy to treat vascular calcification in the future. In this review, we summarize the roles of various noncoding RNAs in vascular calcification and the technologies to modulate the noncoding RNAs for therapeutic purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bartel DP (2018) Metazoan MicroRNAs. Cell 173:20–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumann V, Winkler J (2014) miRNA-based therapies: strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med Chem 6:1967–1984

    Article  CAS  PubMed  Google Scholar 

  • Boettcher M, Mcmanus MT (2015) Choosing the Right Tool for the Job: RNAi, TALEN, or CRISPR. Mol Cell 58:575–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyce BF, Xing L (2007) Biology of RANK, RANKL, and osteoprotegerin. Arthr Res Ther 9(Suppl 1):S1

    Article  CAS  Google Scholar 

  • Carrion K, Dyo J, Patel V, Sasik R, Mohamed SA, Hardiman G, Nigam V (2014) The long non-coding HOTAIR is modulated by cyclic stretch and WNT/beta-CATENIN in human aortic valve cells and is a novel repressor of calcification genes. PLoS ONE 9:e96577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerritelli SM, Frolova EG, Feng C, Grinberg A, Love PE, Crouch RJ (2003) Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 null mice. Mol Cell 11:807–815

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee SS (2017) Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids 8:132–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Wang J, Jiang Y, Gu W, Ni B, Sun H, Gu W, Chen L, Shao Y (2018) Identification of circular RNAs in human aortic valves. Gene 642:135–144

    Article  CAS  PubMed  Google Scholar 

  • Choe N, Kwon DH, Shin S, Kim YS, Kim YK, Kim J, Ahn Y, Eom GH, Kook H (2017) The microRNA miR-124 inhibits vascular smooth muscle cell proliferation by targeting S100 calcium-binding protein A4 (S100A4). FEBS Lett 591:1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Cui RR, Li SJ, Liu LJ, Yi L, Liang QH, Zhu X, Liu GY, Liu Y, Wu SS, Liao XB, Yuan LQ, Mao DA, Liao EY (2012) MicroRNA-204 regulates vascular smooth muscle cell calcification in vitro and in vivo. Cardiovasc Res 96:320–329

    Article  CAS  PubMed  Google Scholar 

  • Disteche CM, Berletch JB (2015) X-chromosome inactivation and escape. J Genet 94:591–599

    Article  PubMed  PubMed Central  Google Scholar 

  • Du Y, Gao C, Liu Z, Wang L, Liu B, He F, Zhang T, Wang Y, Wang X, Xu M, Luo GZ, Zhu Y, Xu Q, Wang X, Kong W (2012) Upregulation of a disintegrin and metalloproteinase with thrombospondin motifs-7 by miR-29 repression mediates vascular smooth muscle calcification. Arterioscler Thromb Vasc Biol 32:2580–2588

    Article  CAS  PubMed  Google Scholar 

  • Duarte WR, Shibata T, Takenaga K, Takahashi E, Kubota K, Ohya K, Ishikawa I, Yamauchi M, Kasugai S (2003) S100A4: a novel negative regulator of mineralization and osteoblast differentiation. J Bone Miner Res 18:493–501

    Article  CAS  PubMed  Google Scholar 

  • Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15:7–21

    Article  CAS  PubMed  Google Scholar 

  • Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Loveland J, Mudge JM, Sisu C, Wright J, Armstrong J, Barnes I, Berry A, Bignell A, Sala SC, Chrast J, Cunningham F, Di Domenico T, Donaldson S, Fiddes IT, Giron CG, Gonzalez JM, Grego T, Hardy M, Hourlier T, Hunt T, Izuogu OG, Lagarde J, Martin FJ, Martinez L, Mohanan S, Muir P, Navarro FCP, Parker A, Pei B, Pozo F, Ruffier M, Schmitt BM, Stapleton E, Suner MM, Sycheva I, Uszczynska-Ratajczak B, Xu J, Yates A, Zerbino D, Zhang Y, Aken B, Choudhary JS, Gerstein M, Guigo R, Hubbard TJP, Kellis M, Paten B, Reymond A, Tress ML, Flicek P (2018) GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res 47:D766–D773

    Article  CAS  PubMed Central  Google Scholar 

  • Glazar P, Papavasileiou P, Rajewsky N (2014) circBase: a database for circular RNAs. RNA 20:1666–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goettsch C, Rauner M, Pacyna N, Hempel U, Bornstein SR, Hofbauer LC (2011) miR-125b regulates calcification of vascular smooth muscle cells. Am J Pathol 179:1594–1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadji F, Boulanger MC, Guay SP, Gaudreault N, Amellah S, Mkannez G, Bouchareb R, Marchand JT, Nsaibia MJ, Guauque-Olarte S, Pibarot P, Bouchard L, Bosse Y, Mathieu P (2016) Altered DNA methylation of long noncoding RNA H19 in Calcific aortic valve disease promotes mineralization by silencing NOTCH1. Circulation 134:1848–1862

    Article  CAS  PubMed  Google Scholar 

  • Hajjari M, Salavaty A (2015) HOTAIR: an oncogenic long non-coding RNA in different cancers. Cancer Biol Med 12:1–9

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ, Kjems J (2011) miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 30:4414–4422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howlett P, Cleal JK, Wu H, Shah N, Horton A, Curzen N, Mahmoudi M (2018) MicroRNA 8059 as a marker for the presence and extent of coronary artery calcification. Open Heart 5:e000678

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32:453–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karwowski W, Naumnik B, Szczepanski M, Mysliwiec M (2012) The mechanism of vascular calcification - a systematic review. Med Sci Monit 18:1–11

    Article  Google Scholar 

  • Kim YK (2015) Extracellular microRNAs as biomarkers in human disease. Chonnam Med J 51:51–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YK, Wee G, Park J, Kim J, Baek D, Kim JS, Kim VN (2013) TALEN-based knockout library for human microRNAs. Nat Struct Mol Biol 20:1458–1464

    Article  CAS  PubMed  Google Scholar 

  • Kim YK, Kim B, Kim VN (2016) Re-evaluation of the roles of DROSHA, Export in 5, and DICER in microRNA biogenesis. Proc Natl Acad Sci USA 113:E1881–1889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kind B, Muster B, Staroske W, Herce HD, Sachse R, Rapp A, Schmidt F, Koss S, Cardoso MC, Lee-Kirsch MA (2014) Altered spatio-temporal dynamics of RNase H2 complex assembly at replication and repair sites in Aicardi-Goutieres syndrome. Hum Mol Genet 23:5950–5960

    Article  CAS  PubMed  Google Scholar 

  • Kleaveland B, Shi CY, Stefano J, Bartel DP (2018) A Network of Noncoding Regulatory RNAs Acts in the Mammalian Brain. Cell 174(350–362):e317

    Google Scholar 

  • Lanzer P, Boehm M, Sorribas V, Thiriet M, Janzen J, Zeller T, St Hilaire C, Shanahan C (2014) Medial vascular calcification revisited: review and perspectives. Eur Heart J 35:1515–1525

    Article  PubMed  PubMed Central  Google Scholar 

  • Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, Laneve P, Rajewsky N, Bozzoni I (2017) Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 66(22–37):e29

    Google Scholar 

  • Li X, Yang L, Chen LL (2018) The biogenesis, functions, and challenges of circular RNAs. Mol Cell 71:428–442

    Article  CAS  PubMed  Google Scholar 

  • Liao XB, Zhang ZY, Yuan K, Liu Y, Feng X, Cui RR, Hu YR, Yuan ZS, Gu L, Li SJ, Mao DA, Lu Q, Zhou XM, De Jesus Perez VA, Yuan LQ (2013) MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells. Endocrinology 154:3344–3352

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Xiao X, Shen Y, Chen L, Xu C, Zhao H, Wu Y, Zhang Q, Zhong J, Tang Z, Liu C, Zhao Q, Zheng Y, Cao R, Zu X (2017) MicroRNA-32 promotes calcification in vascular smooth muscle cells: implications as a novel marker for coronary artery calcification. PLoS ONE 12:e0174138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao YS, Sunwoo H, Zhang B, Spector DL (2011) Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat Cell Biol 13:95–101

    Article  CAS  PubMed  Google Scholar 

  • Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, Le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338

    Article  CAS  PubMed  Google Scholar 

  • Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, Shenzis S, Samson M, Dittmar G, Landthaler M, Chekulaeva M, Rajewsky N, Kadener S (2017) Translation of CircRNAs. Mol Cell 66(9–21):e27

    Google Scholar 

  • Panizo S, Naves-Diaz M, Carrillo-Lopez N, Martinez-Arias L, Fernandez-Martin JL, Ruiz-Torres MP, Cannata-Andia JB, Rodriguez I (2016) MicroRNAs 29b, 133b, and 211 regulate vascular smooth muscle calcification mediated by high phosphorus. J Am Soc Nephrol 27:824–834

    Article  CAS  PubMed  Google Scholar 

  • Piwecka M, Glazar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, Filipchyk A, Klironomos F, Jara CCA, Jara CCA, Fenske P, Trimbuch T, Zywitza V, Plass M, Schreyer L, Ayoub S, Kocks C, Kuhn R, Rosenmund C, Birchmeier C, Rajewsky N (2017) Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357:eaam8526

    Article  CAS  PubMed  Google Scholar 

  • Qiao W, Chen L, Zhang M (2014) MicroRNA-205 regulates the calcification and osteoblastic differentiation of vascular smooth muscle cells. Cell Physiol Biochem 33:1945–1953

    Article  CAS  PubMed  Google Scholar 

  • Raveh E, Matouk IJ, Gilon M, Hochberg A (2015) The H19 Long non-coding RNA in cancer initiation, progression and metastasis - a proposed unifying theory. Mol Cancer 14:184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinn J, Guttman M (2014) RNA Function. RNA and dynamic nuclear organization. Science 345:1240–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222

    Article  CAS  PubMed  Google Scholar 

  • Sage AP, Tintut Y, Demer LL (2010) Regulatory mechanisms in vascular calcification. Nat Rev Cardiol 7:528–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sallam T, Sandhu J, Tontonoz P (2018) Long noncoding RNA discovery in cardiovascular disease: decoding form to function. Circ Res 122:155–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selleri L, Bartolomei MS, Bickmore WA, He L, Stubbs L, Reik W, Barsh GS (2016) A Hox-embedded long noncoding RNA: is it all hot air? PLoS Genet 12:e1006485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shioi A, Nishizawa Y, Jono S, Koyama H, Hosoi M, Morii H (1995) Beta-glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 15:2003–2009

    Article  CAS  PubMed  Google Scholar 

  • Wang HJ, Zhang PJ, Chen WJ, Jie D, Dan F, Jia YH, Xie LX (2013) Characterization and Identification of novel serum microRNAs in sepsis patients with different outcomes. Shock 39:480–487

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang Y, Gu W, Ni B, Sun H, Yu T, Gu W, Chen L, Shao Y (2016) Comparative transcriptome analysis reveals substantial tissue specificity in human aortic valve. Evol Bioinform Online 12:175–184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson RC, Doudna JA (2013) Molecular mechanisms of RNA interference. Annu Rev Biophys 42:217–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagawa B, Lovren F, Pan Y, Garg V, Quan A, Tang G, Singh KK, Shukla PC, Kalra NP, Peterson MD, Verma S (2012) miRNA-141 is a novel regulator of BMP-2-mediated calcification in aortic stenosis. J Thorac Cardiovasc Surg 144:256–262

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Li L, Xie F, Guo S, Liu F, Dong N, Wang Y (2018) LncRNA TUG1 sponges miR-204-5p to promote osteoblast differentiation through upregulating Runx2 in aortic valve calcification. Cardiovasc Res 114:168–179

    Article  CAS  PubMed  Google Scholar 

  • Zheng S, Zhang S, Song Y, Guo W, Zhai W, Qiu X, Li J (2016) MicroRNA-297a regulates vascular calcification by targeting fibroblast growth factor 23. Iran J Basic Med Sci 19:1331–1336

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2018R1A2B6001104 and NRF-2018R1A2B3001503).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young-Kook Kim or Hyun Kook.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YK., Kook, H. Diverse roles of noncoding RNAs in vascular calcification. Arch. Pharm. Res. 42, 244–251 (2019). https://doi.org/10.1007/s12272-019-01118-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-019-01118-z

Keywords

Navigation