Skip to main content
Log in

Acid ceramidase, an emerging target for anti-cancer and anti-angiogenesis

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Sphingolipid metabolism plays an important role in determining the fate of a cell. Among several sphingolipid metabolites, ceramide is a key player in intracellular signal transduction. Ceramide is usually converted to various metabolites such as sphingomyelin, sphingosine, ceramide-1-phosphate, and glucosylceramide. If ceramide is accumulated in the cell, it induces apoptosis. On the other hand, its metabolite sphingosine is converted to sphingosine-1-phosphate (S1P), which promotes angiogenesis via G protein coupled receptor signaling. Therefore, the equilibrium in ceramide and S1P levels in cells plays an important role in angiogenesis as well as cell death. Acid ceramidase (AC) is a promising target protein in the development of multi-targeted anticancer drugs as its inhibition can simultaneously inhibit angiogenesis via the Akt and ERK 1/2 pathway and limit cancer growth through ceramide-induced apoptosis. Although some inhibitors of AC have been reported, they have not been proven effective for human therapy. Recent advancement in the elucidation of AC structure will facilitate the development of better inhibitors for treating human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdollahi A, Lipson KE, Sckell A, Zieher H, Klenke F, Poerschke D, Roth A, Han X, Krix M, Bischof M (2003) Combined therapy with direct and indirect angiogenesis inhibition results in enhanced antiangiogenic and antitumor effects. Cancer Res 63:8890–8898

    CAS  PubMed  Google Scholar 

  • Abuhusain HJ, Matin A, Qiao Q, Shen H, Kain N, Day BW, Stringer BW, Daniels B, Laaksonen MA, Teo C (2013) A metabolic shift favouring sphingosine 1-phosphate at the expense of ceramide controls glioblastoma angiogenesis. J Biol Chem 288:37355–37364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Airola MV, Allen WJ, Pulkoski-Gross MJ, Obeid LM, Rizzo RC, Hannun YA (2015) Structural basis for ceramide recognition and hydrolysis by human neutral ceramidase. Structure 23:1482–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai A, Szulc ZM, Bielawski J, Pierce JS, Rembiesa B, Terzieva S, Mao C, Xu R, Wu B, Clarke CJ, Newcomb B, Liu X, Norris J, Hannun YA, Bielawska A (2014) Targeting (cellular) lysosomal acid ceramidase by B13: design, synthesis and evaluation of novel DMG-B13 ester prodrugs. Bioorg Med Chem 22:6933–6944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai A, Mao C, Jenkins RW, Szulc ZM, Bielawska A, Hannun YA (2017) Anticancer actions of lysosomally targeted inhibitor, LCL521, of acid ceramidase. PLoS ONE 12:e0177805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckham TH, Lu P, Cheng JC, Zhao D, Turner LS, Zhang X, Hoffman S, Armeson KE, Liu A, Marrison T (2012) Acid ceramidase-mediated production of sphingosine 1-phosphate promotes prostate cancer invasion through upregulation of cathepsin B. Int J Cancer 131:2034–2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhabak KP, Arenz C (2012) Novel amide- and sulfonamide-based aromatic ethanolamines: effects of various substituents on the inhibition of acid and neutral ceramidases. Bioorg Med Chem 20:6162–6170

    Article  CAS  PubMed  Google Scholar 

  • Bielawska A, Greenberg MS, Perry D, Jayadev S, Shayman JA, McKay C, Hannun YA (1996) (1S, 2R)-D-erythro-2-(N-Myristoylamino)-1-phenyl-1-propanol as an inhibitor of ceramidase. J Biol Chem 271:12646–12654

    Article  CAS  PubMed  Google Scholar 

  • Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E (2015) Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. N Engl J Med 373:1627–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyerinas B, Jochems C, Fantini M, Heery CR, Gulley JL, Tsang KY, Schlom J (2015) Antibody-dependent cellular cytotoxicity activity of a novel anti–PD-L1 antibody avelumab (MSB0010718C) on human tumor cells. Cancer Immunol Res 3:1148–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley E, Dasgupta S, Jiang X, Zhao X, Zhu G, He Q, Dinkins M, Bieberich E, Wang G (2014) Critical role of Spns2, a sphingosine-1-phosphate transporter, in lung cancer cell survival and migration. PLoS ONE 9:e110119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3:186–191

    Article  PubMed  Google Scholar 

  • Carbognin L, Pilotto S, Milella M, Vaccaro V, Brunelli M, Caliò A, Cuppone F, Sperduti I, Giannarelli D, Chilosi M (2015) Differential activity of nivolumab, pembrolizumab and MPDL3280A according to the tumor expression of programmed death-ligand-1 (PD-L1): sensitivity analysis of trials in melanoma, lung and genitourinary cancers. PLoS ONE 10:e0130142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll B, Donaldson JC, Obeid L (2015) Sphingolipids in the DNA damage response. Adv Biol Regul 58:38–52

    Article  CAS  PubMed  Google Scholar 

  • Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M, Mitsiades C, Mitsiades N, Yasui H, Letai A (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8:407–419

    Article  CAS  PubMed  Google Scholar 

  • Chavez JA, Holland WL, Bär J, Sandhoff K, Summers SA (2005) Acid ceramidase overexpression prevents the inhibitory effects of saturated fatty acids on insulin signaling. J Biol Chem 280:20148–20153

    Article  CAS  PubMed  Google Scholar 

  • Chipuk JE, McStay GP, Bharti A, Kuwana T, Clarke CJ, Siskind LJ, Obeid LM, Green DR (2012) Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell 148:988–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho SM, Lee HK, Liu Q, Wang M-W, Kwon HJ (2018) A guanidine-based synthetic compound suppresses angiogenesis via inhibition of acid ceramidase. ACS Chem Biol. https://doi.org/10.1021/acschembio.8b00558

    Article  PubMed  Google Scholar 

  • Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind JS, Spiegel S (1996) Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381:800–803

    Article  CAS  PubMed  Google Scholar 

  • Doan NB, Alhajala H, Al-Gizawiy MM, Mueller WM, Rand SD, Connelly JM, Cochran EJ, Chitambar CR, Clark P, Kuo J (2017) Acid ceramidase and its inhibitors: a de novo drug target and a new class of drugs for killing glioblastoma cancer stem cells with high efficiency. Oncotarget 8:112662–112674

    PubMed  PubMed Central  Google Scholar 

  • Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floros T, Tarhini AA (2015) Anticancer cytokines: biology and clinical effects of interferon-α2, interleukin (IL)-2, IL-15, IL-21, and IL-12. Semin Oncol 42:539–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  CAS  PubMed  Google Scholar 

  • Franzen R, Fabbro D, Aschrafi A, Pfeilschifter J, Huwiler A (2002) Nitric oxide induces degradation of the neutral ceramidase in rat renal mesangial cells and is counterregulated by protein kinase C. J Biol Chem 277:46184–46190

    Article  CAS  PubMed  Google Scholar 

  • Gebai A, Gorelik A, Li Z, Illes K, Nagar B (2018) Structural basis for the activation of acid ceramidase. Nat Commun 9:1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grijalvo S, Bedia C, Triola G, Casas J, Llebaria A, Teixido J, Rabal O, Levade T, Delgado A, Fabrias G (2006) Design, synthesis and activity as acid ceramidase inhibitors of 2-oxooctanoyl and N-oleoylethanolamine analogues. Chem Phys Lipids 144:69–84

    Article  CAS  PubMed  Google Scholar 

  • Guenther GG, Peralta ER, Rosales KR, Wong SY, Siskind LJ, Edinger AL (2008) Ceramide starves cells to death by downregulating nutrient transporter proteins. Proc Natl Acad Sci USA 105:17402–17407

    Article  PubMed  PubMed Central  Google Scholar 

  • Haus JM, Kashyap SR, Kasumov T, Zhang R, Kelly KR, DeFronzo RA, Kirwan JP (2009) Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 58:337–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Okino N, Dhami R, Dagan A, Gatt S, Schulze H, Sandhoff K, Schuchman EH (2003) Purification and characterization of recombinant, human acid ceramidase. Catalytic reactions and interactions with acid sphingomyelinase. J Biol Chem 278:32978–32986

    Article  CAS  PubMed  Google Scholar 

  • He X, Huang Y, Li B, Gong CX, Schuchman EH (2010) Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol Aging 31:398–408

    Article  CAS  PubMed  Google Scholar 

  • Heo K, Park K-A, Kim Y-H, Kim S-H, Oh Y-S, Kim I-H, Ryu S-H, Suh P-G (2009) Sphingosine 1-phosphate induces vesicular endothelial growth factor expression in endothelial cells. BMB Rep 42:685–690

    Article  CAS  PubMed  Google Scholar 

  • Holman DH, Turner LS, El-Zawahry A, Elojeimy S, Liu X, Bielawski J, Szulc ZM, Norris K, Zeidan YH, Hannun YA (2008) Lysosomotropic acid ceramidase inhibitor induces apoptosis in prostate cancer cells. Cancer Chemother Pharmacol 61:231–242

    Article  CAS  PubMed  Google Scholar 

  • Huang P, Plunkett W (1995) Fludarabine-and gemcitabine-induced apoptosis: incorporation of analogs into DNA is a critical event. Cancer Chemother Pharmacol 36:181–188

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Tanimukai H, Liu F, Iqbal K, Grundke-Iqbal I, Gong CX (2004) Elevation of the level and activity of acid ceramidase in Alzheimer’s disease brain. Eur J Neurosci 20:3489–3497

    Article  PubMed  Google Scholar 

  • Hwang Y-H, Tani M, Nakagawa T, Okino N, Ito M (2005) Subcellular localization of human neutral ceramidase expressed in HEK293 cells. Biochem Biophys Res Commun 331:37–42

    Article  CAS  PubMed  Google Scholar 

  • Jana A, Pahan K (2004) Fibrillar amyloid-β peptides kill human primary neurons via NADPH oxidase-mediated activation of neutral sphingomyelinase IMPLICATIONS FOR ALZHEIMER’S DISEASE. J Biol Chem 279:51451–51459

    Article  CAS  PubMed  Google Scholar 

  • Jing Y, Liu L-Z, Jiang Y, Zhu Y, Guo NL, Barnett J, Rojanasakul Y, Agani F, Jiang B-H (2011) Cadmium increases HIF-1 and VEGF expression through ROS, ERK, and AKT signaling pathways and induces malignant transformation of human bronchial epithelial cells. Toxicol Sci 125:10–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson KR, Becker KP, Facchinetti MM, Hannun YA, Obeid LM (2002) PKC-dependent activation of sphingosine kinase 1 and translocation to the plasma membrane extracellular release of sphingosine-1-phosphate induced by phorbol 12-myristate 13-acetate (PMA). J Biol Chem 277:35257–35262

    Article  CAS  PubMed  Google Scholar 

  • Jung HJ, Shim JS, Lee J, Song YM, Park KC, Choi SH, Kim ND, Yoon JH, Mungai PT, Schumacker PT, Kwon HJ (2010) Terpestacin inhibits tumor angiogenesis by targeting UQCRB of mitochondrial complex III and suppressing hypoxia-induced ROS production and cellular oxygen sensing. J Biol Chem 285:11584–11595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ketola K, Kallioniemi O, Iljin K (2012) Chemical biology drug sensitivity screen identifies sunitinib as synergistic agent with disulfiram in prostate cancer cells. PLoS ONE 7:e51470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim E-S, Kim J-S, Kim SG, Hwang S, Lee CH, Moon A (2011) Sphingosine 1-phosphate regulates matrix metalloproteinase-9 expression and breast cell invasion through S1P3 − Gαq coupling. J Cell Sci 124:2220–2230

    Article  CAS  PubMed  Google Scholar 

  • Kitatani K, Idkowiak-Baldys J, Hannun YA (2008) The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal 20:1010–1018

    Article  CAS  PubMed  Google Scholar 

  • Klobucar M, Grbcic P, Pavelic SK, Jonjic N, Visentin S, Sedic M (2018) Acid ceramidase inhibition sensitizes human colon cancer cells to oxaliplatin through downregulation of transglutaminase 2 and beta1 integrin/FAK-mediated signalling. Biochem Biophys Res Commun 503:843–848

    Article  CAS  PubMed  Google Scholar 

  • Koch J, Gärtner S, Li C-M, Quintern LE, Bernardo K, Levran O, Schnabel D, Desnick RJ, Schuchman EH, Sandhoff K (1996) Molecular cloning and characterization of a full-length complementary DNA encoding human acid ceramidase identification of the first molecular lesion causing Farber disease. J Biol Chem 271:33110–33115

    Article  CAS  PubMed  Google Scholar 

  • Krupitskaya Y, Wakelee HA (2009) Ramucirumab, a fully human mAb to the transmembrane signaling tyrosine kinase VEGFR-2 for the potential treatment of cancer. Curr Opin Investig Drugs 10:597–605

    CAS  PubMed  Google Scholar 

  • Lee O-H, Kim Y-M, Lee YM, Moon E-J, Lee D-J, Kim J-H, Kim K-W, Kwon Y-G (1999) Sphingosine 1-phosphate induces angiogenesis: its angiogenic action and signaling mechanism in human umbilical vein endothelial cells. Biochem Biophys Res Commun 264:743–750

    Article  CAS  PubMed  Google Scholar 

  • Linke T, Wilkening G, Sadeghlar F, Mozcall H, Bernardo K, Schuchman E, Sandhoff K (2001) Interfacial Regulation of Acid Ceramidase Activity stimulation of ceramide degradation by lysosomal lipids and sphingolipid activator proteins. J Biol Chem 276:5760–5768

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Cheng JC, Turner LS, Elojeimy S, Beckham TH, Bielawska A, Keane TE, Hannun YA, Norris JS (2009) Acid ceramidase upregulation in prostate cancer: role in tumor development and implications for therapy. Expert Opin Ther Targets 13:1449–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucki NC, Sewer MB (2009) The cAMP-responsive element binding protein (CREB) regulates the expression of acid ceramidase (ASAH1) in H295R human adrenocortical cells. Biochim Biophys Acta 1791:706–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucki NC, Sewer MB (2011) Genistein stimulates MCF-7 breast cancer cell growth by inducing acid ceramidase (ASAH1) gene expression. J Biol Chem 286:19399–19409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lund EL, Bastholm L, Kristjansen PE (2000) Therapeutic synergy of TNP-470 and ionizing radiation: effects on tumor growth, vessel morphology, and angiogenesis in human glioblastoma multiforme xenografts. Clin Cancer Res 6:971–978

    CAS  PubMed  Google Scholar 

  • Mahdy AE, Cheng JC, Li J, Elojeimy S, Meacham WD, Turner LS, Bai A, Gault CR, McPherson AS, Garcia N (2009) Acid ceramidase upregulation in prostate cancer cells confers resistance to radiation: AC inhibition, a potential radiosensitizer. Mol Ther 17:430–438

    Article  CAS  PubMed  Google Scholar 

  • Mao C, Obeid LM (2008) Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate. Biochim Biophys Acta Mol Cell Biol Lipids 1781:424–434

    Article  CAS  Google Scholar 

  • Mao CQ, Du JZ, Sun TM, Yao YD, Zhang PZ, Song EW, Wang J (2011) A biodegradable amphiphilic and cationic triblock copolymer for the delivery of siRNA targeting the acid ceramidase gene for cancer therapy. Biomaterials 32:3124–3133

    Article  CAS  PubMed  Google Scholar 

  • Mitsutake S, Kita K, Okino N, Ito M (1997) [14C] ceramide synthesis by sphingolipid ceramide N-deacylase: new assay for ceramidase activity detection. Anal Biochem 247:52–57

    Article  CAS  PubMed  Google Scholar 

  • Morad SA, Levin JC, Tan SF, Fox TE, Feith DJ, Cabot MC (2013a) Novel off-target effect of tamoxifen–inhibition of acid ceramidase activity in cancer cells. Biochim Biophys Acta 1831:1657–1664

    Article  CAS  PubMed  Google Scholar 

  • Morad SA, Madigan JP, Levin JC, Abdelmageed N, Karimi R, Rosenberg DW, Kester M, Shanmugavelandy SS, Cabot MC (2013b) Tamoxifen magnifies therapeutic impact of ceramide in human colorectal cancer cells independent of p53. Biochem Pharmacol 85:1057–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales A, París R, Villanueva A, Llacuna L, García-Ruiz C, Fernández-Checa JC (2007) Pharmacological inhibition or small interfering RNA targeting acid ceramidase sensitizes hepatoma cells to chemotherapy and reduces tumor growth in vivo. Oncogene 26:905–916

    Article  CAS  PubMed  Google Scholar 

  • Morgan P, Van Der Graaf PH, Arrowsmith J, Feltner DE, Drummond KS, Wegner CD, Street SD (2012) Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving Phase II survival. Drug Discov Today 17:419–424

    Article  CAS  PubMed  Google Scholar 

  • Morishima-Kawashima M, Ihara Y (2002) Alzheimer’s disease: β-amyloid protein and tau. J Neurosci Res 70:392–401

    Article  CAS  PubMed  Google Scholar 

  • Oinonen C, Rouvinen J (2000) Structural comparison of Ntn-hydrolases. Protein Sci 9:2329–2337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivera A, Kohama T, Edsall L, Nava V, Cuvillier O, Poulton S, Spiegel S (1999) Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J Cell Biol 147:545–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papadopoulos N, Martin J, Ruan Q, Rafique A, Rosconi MP, Shi E, Pyles EA, Yancopoulos GD, Stahl N, Wiegand SJ (2012) Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis 15:171–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JH, Eliyahu E, Narla G, DiFeo A, Martignetti JA, Schuchman EH (2005) KLF6 is one transcription factor involved in regulating acid ceramidase gene expression. Biochim Biophys Acta 1732:82–87

    Article  CAS  PubMed  Google Scholar 

  • Pei J, Grishin NV (2003) Peptidase family U34 belongs to the superfamily of N-terminal nucleophile hydrolases. Protein Sci 12:1131–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pizzirani D, Bach A, Realini N, Armirotti A, Mengatto L, Bauer I, Girotto S, Pagliuca C, De Vivo M, Summa M, Ribeiro A, Piomelli D (2015) Benzoxazolone carboxamides: potent and systemically active inhibitors of intracellular acid ceramidase. Angew Chem Int Ed Engl 54:485–489

    CAS  PubMed  Google Scholar 

  • Prasad V, De Jesús K, Mailankody S (2017) The high price of anticancer drugs: origins, implications, barriers, solutions. Nat Rev Clin Oncol 14:381–390

    Article  PubMed  Google Scholar 

  • Raisova M, Goltz G, Bektas M, Bielawska A, Riebeling C, Hossini AM, Eberle J, Hannun YA, Orfanos CE, Geilen CC (2002) Bcl-2 overexpression prevents apoptosis induced by ceramidase inhibitors in malignant melanoma and HaCaT keratinocytes. FEBS Lett 516:47–52

    Article  CAS  PubMed  Google Scholar 

  • Ramírez de Molina A, De La Cueva A, Machado-Pinilla R, Rodriguez-Fanjul V, Gómez del Pulgar T, Cebrián A, Perona R, Lacal JC (2012) Acid ceramidase as a chemotherapeutic target to overcome resistance to the antitumoral effect of choline kinase α inhibition. Curr Cancer Drug Targets 12:617–624

    Article  PubMed  Google Scholar 

  • Rani CS, Abe A, Chang Y, Rosenzweig N, Saltiel AR, Radin NS, Shayman JA (1995) Cell cycle arrest induced by an inhibitor of glucosylceramide synthase; correlation with cyclin-dependent kinases. J Biol Chem 270:2859–2867

    Article  CAS  PubMed  Google Scholar 

  • Realini N, Solorzano C, Pagliuca C, Pizzirani D, Armirotti A, Luciani R, Costi MP, Bandiera T, Piomelli D (2013) Discovery of highly potent acid ceramidase inhibitors with in vitro tumor chemosensitizing activity. Sci Rep 3:1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Realini N, Palese F, Pizzirani D, Pontis S, Basit A, Bach A, Ganesan A, Piomelli D (2016) Acid ceramidase in melanoma expression, localization, and effects of pharmacological inhibition. J Biol Chem 291:2422–2434

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld PJ, Moshfeghi AA, Puliafito CA (2005) Optical coherence tomography findings after an intravitreal injection of bevacizumab (Avastin®) for neovascular age-related macular degeneration. Ophthal Surg Lasers Imaging Retina 36:331–335

    Article  Google Scholar 

  • Saad AF, Meacham WD, Bai A, Anelli V, Anelli V, Mahdy AE, Turner LS, Cheng J, Bielawska A, Bielawski J (2007) The functional effects of acid ceramidase over-expression in prostate cancer progression and resistance to chemotherapy. Cancer Biol Ther 6:1451–1456

    Article  Google Scholar 

  • Saltiel AR (2001) New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell 104:517–529

    Article  CAS  PubMed  Google Scholar 

  • Schulze H, Schepers U, Sandhoff K (2007) Overexpression and mass spectrometry analysis of mature human acid ceramidase. Biol Chem 388:1333–1343

    Article  CAS  PubMed  Google Scholar 

  • Shao Z-M, Wu J, Shen Z-Z, Barsky SH (1998) Genistein exerts multiple suppressive effects on human breast carcinoma cells. Cancer Res 58:4851–4857

    CAS  PubMed  Google Scholar 

  • Shibuya M (2006) Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. BMB Rep 39:469–478

    Article  CAS  Google Scholar 

  • Shtraizent N, Eliyahu E, Park J-H, He X, Shalgi R, Schuchman EH (2008) Autoproteolytic cleavage and activation of human acid ceramidase. J Biol Chem 283:11253–11259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Signorelli P, Munoz-Olaya JM, Gagliostro V, Casas J, Ghidoni R, Fabriàs G (2009) Dihydroceramide intracellular increase in response to resveratrol treatment mediates autophagy in gastric cancer cells. Cancer Lett 282:238–243

    Article  CAS  PubMed  Google Scholar 

  • Sikora J, Pavlu-Pereira H, Elleder M, Roelofs H, Wevers R (2003) Seven novel acid sphingomyelinase gene mutations in Niemann-Pick type A and B patients. Ann Hum Genet 67:63–70

    Article  CAS  PubMed  Google Scholar 

  • Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407

    Article  CAS  PubMed  Google Scholar 

  • Spinedi A, Di Bartolomeo S, Piacentini M (1999) N-Oleoylethanolamine inhibits glucosylation of natural ceramides in CHP-100 neuroepithelioma cells: possible implications for apoptosis. Biochem Biophys Res Commun 255:456–459

    Article  CAS  PubMed  Google Scholar 

  • Stratford S, Hoehn KL, Liu F, Summers SA (2004) Regulation of insulin action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B. J Biol Chem 279:36608–36615

    Article  CAS  PubMed  Google Scholar 

  • Strelow A, Bernardo K, Adam-Klages S, Linke T, Sandhoff K, Krönke M, Adam D (2000) Overexpression of acid ceramidase protects from tumor necrosis factor–induced cell death. J Exp Med 192:601–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Summers SA, Garza LA, Zhou H, Birnbaum MJ (1998) Regulation of insulin-stimulated glucose transporter GLUT4 translocation and Akt kinase activity by ceramide. Mol Cell Biol 18:5457–5464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun W, Jin J, Xu R, Hu W, Szulc ZM, Bielawski J, Obeid LM, Mao C (2010) Substrate specificity, membrane topology, activity regulation of human alkaline ceramidase 2 (ACER2). J Biol Chem 285:8895–9007

    Google Scholar 

  • Tan S-F, Liu X, Fox TE, Barth BM, Sharma A, Turner SD, Awwad A, Dewey A, Doi K, Spitzer B (2016) Acid ceramidase is upregulated in AML and represents a novel therapeutic target. Oncotarget 7:83208–83222

    PubMed  PubMed Central  Google Scholar 

  • Teichgräber V, Ulrich M, Endlich N, Riethmüller J, Wilker B, De Oliveira-Munding CC, Van Heeckeren AM, Barr ML, Von Kürthy G, Schmid KW (2008) Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 14:382–391

    Article  CAS  PubMed  Google Scholar 

  • Tirodkar TS, Lu P, Bai A, Scheffel MJ, Gencer S, Garrett-Mayer E, Bielawska A, Ogretmen B, Voelkel-Johnson C (2015) Expression of ceramide synthase 6 transcriptionally activates acid ceramidase in a c-Jun N-terminal kinase (JNK)-dependent manner. J Biol Chem 290:13157–13167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuboi K, Sun Y-X, Okamoto Y, Araki N, Tonai T, Ueda N (2005) Molecular characterization of N-acylethanolamine-hydrolyzing acid amidase, a novel member of the choloylglycine hydrolase family with structural and functional similarity to acid ceramidase. J Biol Chem 280:11082–11092

    Article  CAS  PubMed  Google Scholar 

  • Vethakanraj HS, Sesurajan BP, Padmanaban VP, Jayaprakasam M, Murali S, Sekar AK (2018) Anticancer effect of acid ceramidase inhibitor ceranib-2 in human breast cancer cell lines MCF-7, MDA MB-231 by the activation of SAPK/JNK, p38 MAPK apoptotic pathways, inhibition of the Akt pathway, downregulation of ERalpha. Anticancer Drugs 29:50–60

    Article  CAS  PubMed  Google Scholar 

  • Visentin B, Vekich JA, Sibbald BJ, Cavalli AL, Moreno KM, Matteo RG, Garland WA, Lu Y, Yu S, Hall HS (2006) Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9:225–238

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm SM, Dumas J, Adnane L, Lynch M, Carter CA, Schütz G, Thierauch KH, Zopf D (2011) Regorafenib (BAY 73-4506): A new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer 129:245–255

    Article  CAS  PubMed  Google Scholar 

  • Witzig TE, Reeder CB, LaPlant BR, Gupta M, Johnston PB, Micallef IN, Porrata LF, Ansell SM, Colgan JP, Jacobsen ED (2011) A phase II trial of the oral mTOR inhibitor everolimus in relapsed aggressive lymphoma. Leukemia 25:341–347

    Article  CAS  PubMed  Google Scholar 

  • Xu R, Jin J, Hu W, Sun W, Bielawski J, Szulc Z, Taha T, Obeid LM, Mao C (2006) Golgi alkaline ceramidase regulates cell proliferation and survival by controlling levels of sphingosine and S1P. FASEB J 20:1813–1825

    Article  CAS  PubMed  Google Scholar 

  • Yeager A, Uhas KA, Coles C, Davis P, Krause W, Moser H (2000) Bone marrow transplantation for infantile ceramidase deficiency (Farber disease). Bone Marrow Transpl 26:357–363

    Article  CAS  Google Scholar 

  • Yeramian A, Sorolla A, Velasco A, Santacana M, Dolcet X, Valls J, Abal L, Moreno S, Egido R, Casanova JM (2012) Inhibition of activated receptor tyrosine kinases by Sunitinib induces growth arrest and sensitizes melanoma cells to Bortezomib by blocking Akt pathway. Int J Cancer 130:967–978

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Mandal AK, Mital A, Popescu N, Zimonjic D, Moser A, Moser H, Mukherjee AB (2000) Human acid ceramidase gene: novel mutations in Farber disease. Mol Genet Metab 70:301–309

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Grants from the National Research Foundation of Korea (MSIP; 2015K1A1A2028365, 2015M3A9C4076321, 2016K2A9A1A03904900), the Brain Korea 21 Plus Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Jeong Kwon.

Ethics declarations

Conflict of interest

The authors have declared that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, S.M., Kwon, H.J. Acid ceramidase, an emerging target for anti-cancer and anti-angiogenesis. Arch. Pharm. Res. 42, 232–243 (2019). https://doi.org/10.1007/s12272-019-01114-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-019-01114-3

Keywords

Navigation