Skip to main content
Log in

Abnormal hippocampal neurogenesis in Parkinson’s disease: relevance to a new therapeutic target for depression with Parkinson’s disease

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a common progressive neurodegenerative disorder characterized by motor dysfunction, including bradykinesia, tremor, rigidity, and postural instability. Recent clinical findings recognize PD as a complex disease with diverse neuropsychiatric complications. Depression is the most frequent non-motor psychiatric symptom experienced in PD, and it is associated with poor quality of life. While the pathophysiology of PD-associated depression is not directly related to neurodegenerative processes in the substantia nigra, underlying mechanisms remain unclear and there are few symptomatic treatments. Altered adult hippocampal neurogenesis is considered crucial for the development and treatment of depression. In genetic animal models and human postmortem studies of PD, severely impaired adult neurogenesis has been observed, with patients showing hippocampal atrophy and disrupted hippocampal neurogenesis. Because adult newborn neurons appear to exert various functions, which relate to non-motor symptoms observed in PD, there might be a close correlation between malformation of newborn neurons in the adult hippocampus and depressive symptoms. Here, we discuss current concepts regarding impaired hippocampal neurogenesis and non-motor symptoms of PD, and review PD-associated pathophysiological factors regulating neurogenesis, including inflammatory signaling and autophagy. We present a novel framework for targeting adult hippocampal neurogenesis, which could provide a promising treatment for PD-associated depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alvarez-Erviti L, Rodriguez-Oroz MC, Cooper JM, Caballero C, Ferrer I, Obeso JA, Schapira AH (2010) Chaperone-mediated autophagy markers in Parkinson disease brains. Arch Neurol 67:1464–1472

    Article  PubMed  Google Scholar 

  • Bang Y, Kim KS, Seol W, Choi HJ (2016) LRRK2 interferes with aggresome formation for autophagic clearance. Mol Cell Neurosci 75:71–80

    Article  CAS  PubMed  Google Scholar 

  • Ben-Hur T, Ben-Menachem O, Furer V, Einstein O, Mizrachi-Kol R, Grigoriadis N (2003) Effects of proinflammatory cytokines on the growth, fate, and motility of multipotential neural precursor cells. Mol Cell Neurosci 24:623–631

    Article  CAS  PubMed  Google Scholar 

  • Boldrini M, Underwood MD, Hen R, Rosoklija GB, Dwork AJ, John Mann J, Arango V (2009) Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology 34:2376–2389

    Article  CAS  PubMed  Google Scholar 

  • Boldrini M, Hen R, Underwood MD, Rosoklija GB, Dwork AJ, Mann JJ, Arango V (2012) Hippocampal angiogenesis and progenitor cell proliferation are increased with antidepressant use in major depression. Biol Psychiatry 72:562–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boldrini M, Santiago AN, Hen R, Dwork AJ, Rosoklija GB, Tamir H, Arango V, John Mann J (2013) Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression. Neuropsychopharmacology 38:1068–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS (2000) Hippocampal volume reduction in major depression. Am J Psychiatry 157:115–118

    Article  CAS  PubMed  Google Scholar 

  • Brochard V, Combadiere B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, Bonduelle O, Alvarez-Fischer D, Callebert J, Launay JM, Duyckaerts C, Flavell RA, Hirsch EC, Hunot S (2009) Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest 119:182–192

    CAS  PubMed  Google Scholar 

  • Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1–10

    Article  CAS  PubMed  Google Scholar 

  • Bruck A, Kurki T, Kaasinen V, Vahlberg T, Rinne JO (2004) Hippocampal and prefrontal atrophy in patients with early non-demented Parkinson’s disease is related to cognitive impairment. J Neurol Neurosurg Psychiatry 75:1467–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cambiaghi M, Cursi M, Magri L, Castoldi V, Comi G, Minicucci F, Galli R, Leocani L (2013) Behavioural and EEG effects of chronic rapamycin treatment in a mouse model of tuberous sclerosis complex. Neuropharmacology 67:1–7

    Article  CAS  PubMed  Google Scholar 

  • Castano A, Herrera AJ, Cano J, Machado A (2002) The degenerative effect of a single intranigral injection of LPS on the dopaminergic system is prevented by dexamethasone, and not mimicked by rh-TNF-alpha, IL-1beta and IFN-gamma. J Neurochem 81:150–157

    Article  CAS  PubMed  Google Scholar 

  • Chao Y, Wong SC, Tan EK (2014) Evidence of inflammatory system involvement in Parkinson’s disease. Biomed Res Int 2014:308654

    PubMed  PubMed Central  Google Scholar 

  • Chen H, Zhang SM, Hernan MA, Schwarzschild MA, Willett WC, Colditz GA, Speizer FE, Ascherio A (2003) Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol 60:1059–1064

    Article  PubMed  Google Scholar 

  • Couillard-Despres S, Aigner L (2011) In vivo imaging of adult neurogenesis. Eur J Neurosci 33:1037–1044

    Article  PubMed  Google Scholar 

  • Crews L, Mizuno H, Desplats P, Rockenstein E, Adame A, Patrick C, Winner B, Winkler J, Masliah E (2008) Alpha-synuclein alters Notch-1 expression and neurogenesis in mouse embryonic stem cells and in the hippocampus of transgenic mice. J Neurosci 28:4250–4260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czeh B, Lucassen PJ (2007) What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implicated? Eur Arch Psychiatry Clin Neurosci 257:250–260

    Article  PubMed  Google Scholar 

  • Czeh B, Michaelis T, Watanabe T, Frahm J, de Biurrun G, van Kampen M, Bartolomucci A, Fuchs E (2001) Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci USA 98:12796–12801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dean J, Keshavan M (2017) The neurobiology of depression: an integrated view. Asian J Psychiatry 27:101–111

    Article  Google Scholar 

  • Dong H, Gao Z, Rong H, Jin M, Zhang X (2014) Beta-asarone reverses chronic unpredictable mild stress-induced depression-like behavior and promotes hippocampal neurogenesis in rats. Molecules 19:5634–5649

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Elhwuegi AS (2004) Central monoamines and their role in major depression. Prog Neuropsychopharmacol Biol Psychiatry 28:435–451

    Article  CAS  PubMed  Google Scholar 

  • Encinas JM, Enikolopov G (2008) Identifying and quantitating neural stem and progenitor cells in the adult brain. Methods Cell Biol 85:243–272

    Article  CAS  PubMed  Google Scholar 

  • Encinas JM, Vaahtokari A, Enikolopov G (2006) Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci USA 103:8233–8238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  CAS  PubMed  Google Scholar 

  • Farrell KF, Krishnamachari S, Villanueva E, Lou H, Alerte TN, Peet E, Drolet RE, Perez RG (2014) Non-motor parkinsonian pathology in aging A53T alpha-synuclein mice is associated with progressive synucleinopathy and altered enzymatic function. J Neurochem 128:536–546

    Article  CAS  PubMed  Google Scholar 

  • Fava M, Johe K, Ereshefsky L, Gertsik LG, English BA, Bilello JA, Thurmond LM, Johnstone J, Dickerson BC, Makris N, Hoeppner BB, Flynn M, Mischoulon D, Kinrys G, Freeman MP (2016) A phase 1B, randomized, double blind, placebo controlled, multiple-dose escalation study of NSI-189 phosphate, a neurogenic compound, in depressed patients. Mol Psychiatry 21:1372–1380

    Article  CAS  PubMed  Google Scholar 

  • Ferguson JM (2001) SSRI antidepressant medications: adverse effects and tolerability. Prim Care Companion J Clin Psychiatry 3:22–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukuda S, Kato F, Tozuka Y, Yamaguchi M, Miyamoto Y, Hisatsune T (2003) Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus. J Neurosci 23:9357–9366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  CAS  PubMed  Google Scholar 

  • Gao HM, Zhang F, Zhou H, Kam W, Wilson B, Hong JS (2011) Neuroinflammation and alpha-synuclein dysfunction potentiate each other, driving chronic progression of neurodegeneration in a mouse model of Parkinson’s disease. Environ Health Perspect 119:807–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, Eggert K, Oertel W, Banati RB, Brooks DJ (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21:404–412

    Article  CAS  PubMed  Google Scholar 

  • Ghosal K, Stathopoulos A, Pimplikar SW (2010) APP intracellular domain impairs adult neurogenesis in transgenic mice by inducing neuroinflammation. PLoS ONE 5:e11866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goncalves JT, Schafer ST, Gage FH (2016) Adult neurogenesis in the hippocampus: from Stem cells to behavior. Cell 167:897–914

    Article  CAS  PubMed  Google Scholar 

  • Goshen I, Kreisel T, Ben-Menachem-Zidon O, Licht T, Weidenfeld J, Ben-Hur T, Yirmiya R (2008) Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol Psychiatry 13:717–728

    Article  CAS  PubMed  Google Scholar 

  • Guo JD, Zhao X, Li Y, Li GR, Liu XL (2018) Damage to dopaminergic neurons by oxidative stress in Parkinson’s disease (review). Int J Mol Med 41:1817–1825

    PubMed  Google Scholar 

  • Gyorfi O, Nagy H, Bokor M, Moustafa AA, Rosenzweig I, Kelemen O, Keri S (2017) Reduced CA2-CA3 hippocampal subfield volume is related to depression and normalized by l-DOPA in newly diagnosed Parkinson’s disease. Front Neurol 8:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirschfeld RM (2000) History and evolution of the monoamine hypothesis of depression. J Clin Psychiatry 61(Suppl 6):4–6

    CAS  PubMed  Google Scholar 

  • Ho NF, Hooker JM, Sahay A, Holt DJ, Roffman JL (2013) In vivo imaging of adult human hippocampal neurogenesis: progress, pitfalls and promise. Mol Psychiatry 18:404–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoban DB, Connaughton E, Connaughton C, Hogan G, Thornton C, Mulcahy P, Moloney TC, Dowd E (2013) Further characterisation of the LPS model of Parkinson’s disease: a comparison of intra-nigral and intra-striatal lipopolysaccharide administration on motor function, microgliosis and nigrostriatal neurodegeneration in the rat. Brain Behav Immun 27:91–100

    Article  CAS  PubMed  Google Scholar 

  • Hoglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, Hirsch EC (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7:726–735

    Article  PubMed  CAS  Google Scholar 

  • Jayatissa MN, Bisgaard C, Tingstrom A, Papp M, Wiborg O (2006) Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a chronic mild stress rat model of depression. Neuropsychopharmacology 31:2395–2404

    Article  CAS  PubMed  Google Scholar 

  • Jessberger S, Kempermann G (2003) Adult-born hippocampal neurons mature into activity-dependent responsiveness. Eur J Neurosci 18:2707–2712

    Article  PubMed  Google Scholar 

  • Jin J, Kim S-N, Liu X, Zhang H, Zhang C, Seo J-S, Kim Y, Sun T (2016) miR-17-92 cluster regulates adult hippocampal neurogenesis, anxiety, and depression. Cell Rep 16(6):1653–1663. https://doi.org/10.1016/j.celrep.2016.06.101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurgenson M, Aonurm-Helm A, Zharkovsky A (2012) Partial reduction in neural cell adhesion molecule (NCAM) in heterozygous mice induces depression-related behaviour without cognitive impairment. Brain Res 1447:106–118

    Article  PubMed  CAS  Google Scholar 

  • Kanaan NM, Kordower JH, Collier TJ (2008) Age and region-specific responses of microglia, but not astrocytes, suggest a role in selective vulnerability of dopamine neurons after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure in monkeys. Glia 56:1199–1214

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang E, Wen Z, Song H, Christian KM, Ming GL (2016) Adult neurogenesis and psychiatric disorders. Cold Spring Harb Perspect Biol 8:a019026

    Article  PubMed  PubMed Central  Google Scholar 

  • Kempermann G, Krebs J, Fabel K (2008) The contribution of failing adult hippocampal neurogenesis to psychiatric disorders. Curr Opin Psychiatry 21:290–295

    Article  PubMed  Google Scholar 

  • Keohane A, Ryan S, Maloney E, Sullivan AM, Nolan YM (2010) Tumour necrosis factor-alpha impairs neuronal differentiation but not proliferation of hippocampal neural precursor cells: role of Hes1. Mol Cell Neurosci 43:127–135

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Kim W, Kong SY (2013) Antidepressants for neuro-regeneration: from depression to Alzheimer’s disease. Arch Pharm Res 36:1279–1290

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Park JM, Moon J, Choi HJ (2014) Alpha-synuclein interferes with cAMP/PKA-dependent upregulation of dopamine beta-hydroxylase and is associated with abnormal adaptive responses to immobilization stress. Exp Neurol 252:63–74

    Article  CAS  PubMed  Google Scholar 

  • Kohl Z, Ben Abdallah N, Vogelgsang J, Tischer L, Deusser J, Amato D, Anderson S, Muller CP, Riess O, Masliah E, Nuber S, Winkler J (2016) Severely impaired hippocampal neurogenesis associates with an early serotonergic deficit in a BAC alpha-synuclein transgenic rat model of Parkinson’s disease. Neurobiol Dis 85:206–217

    Article  CAS  PubMed  Google Scholar 

  • Kohler O, Benros ME, Nordentoft M, Farkouh ME, Iyengar RL, Mors O, Krogh J (2014) Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry 71:1381–1391

    Article  PubMed  Google Scholar 

  • Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  CAS  PubMed  Google Scholar 

  • Komitova M, Eriksson PS (2004) Sox-2 is expressed by neural progenitors and astroglia in the adult rat brain. Neurosci Lett 369:24–27

    Article  CAS  PubMed  Google Scholar 

  • Kurkowska-Jastrzebska I, Litwin T, Joniec I, Ciesielska A, Przybylkowski A, Czlonkowski A, Czlonkowska A (2004) Dexamethasone protects against dopaminergic neurons damage in a mouse model of Parkinson’s disease. Int Immunopharmacol 4:1307–1318

    Article  CAS  PubMed  Google Scholar 

  • Lafenetre P, Leske O, Ma-Hogemeie Z, Haghikia A, Bichler Z, Wahle P, Heumann R (2010) Exercise can rescue recognition memory impairment in a model with reduced adult hippocampal neurogenesis. Front Behav Neurosci 3:34

    PubMed  PubMed Central  Google Scholar 

  • Lang UE, Heger J, Willbring M, Domula M, Matschke K, Tugtekin SM (2009) Immunosuppression using the mammalian target of rapamycin (mTOR) inhibitor everolimus: pilot study shows significant cognitive and affective improvement. Transplant Proc 41:4285–4288

    Article  CAS  PubMed  Google Scholar 

  • Leentjens AF, Van den Akker M, Metsemakers JF, Lousberg R, Verhey FR (2003) Higher incidence of depression preceding the onset of Parkinson’s disease: a register study. Mov Disord 18:414–418

    Article  PubMed  Google Scholar 

  • Lieberwirth C, Liu Y, Jia X, Wang Z (2012) Social isolation impairs adult neurogenesis in the limbic system and alters behaviors in female prairie voles. Horm Behav 62:357–366

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim J, Bang Y, Choi JH, Han A, Kwon MS, Hyeon Liu K, Jin Choi H (2018) LRRK2 G2019S induces anxiety/depression-like behavior prior to the onset of motor dysfunction with 5-HT1A receptor upregulation in mice. J Neurosci 38:1611–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindgren L, Bergdahl J, Nyberg L (2016) Longitudinal evidence for smaller hippocampus volume as a vulnerability factor for perceived stress. Cereb Cortex 26:3527–3533

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Song N (2016) Molecular mechanism of adult neurogenesis and its association with human brain diseases. J Cent Nerv Syst Dis 8:5–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Dong J, Wang L, Su Y, Yan P, Sun S (2013) Comparative efficacy and acceptability of antidepressants in Parkinson’s disease: a network meta-analysis. PLoS ONE 8:e76651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Xin W, He P, Turner D, Yin J, Gan Y, Shi FD, Wu J (2014) Interleukin-17 inhibits adult hippocampal neurogenesis. Sci Rep 4:7554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucassen PJ, Stumpel MW, Wang Q, Aronica E (2010) Decreased numbers of progenitor cells but no response to antidepressant drugs in the hippocampus of elderly depressed patients. Neuropharmacology 58:940–949

    Article  CAS  PubMed  Google Scholar 

  • Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20:9104–9110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malykhin NV, Carter R, Seres P, Coupland NJ (2010) Structural changes in the hippocampus in major depressive disorder: contributions of disease and treatment. J Psychiatry Neurosci 35:337–343

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao Y, Ge X, Frank CL, Madison JM, Koehler AN, Doud MK, Tassa C, Berry EM, Soda T, Singh KK, Biechele T, Petryshen TL, Moon RT, Haggarty SJ, Tsai LH (2009) Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell 136:1017–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marinova-Mutafchieva L, Sadeghian M, Broom L, Davis JB, Medhurst AD, Dexter DT (2009) Relationship between microglial activation and dopaminergic neuronal loss in the substantia nigra: a time course study in a 6-hydroxydopamine model of Parkinson’s disease. J Neurochem 110:966–975

    Article  CAS  PubMed  Google Scholar 

  • Marsh L (2013) Depression and Parkinson’s disease: current knowledge. Curr Neurol Neurosci Rep 13:409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marxreiter F, Regensburger M, Winkler J (2013) Adult neurogenesis in Parkinson’s disease. Cell Mol Life Sci 70:459–473

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38:1285–1291

    Article  CAS  PubMed  Google Scholar 

  • Mignone JL, Kukekov V, Chiang AS, Steindler D, Enikolopov G (2004) Neural stem and progenitor cells in nestin-GFP transgenic mice. J Comp Neurol 469:311–324

    Article  CAS  PubMed  Google Scholar 

  • Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mogi M, Kondo T, Mizuno Y, Nagatsu T (2007) p53 protein, interferon-gamma, and NF-kappaB levels are elevated in the parkinsonian brain. Neurosci Lett 414:94–97

    Article  CAS  PubMed  Google Scholar 

  • Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302:1760–1765

    Article  CAS  PubMed  Google Scholar 

  • Muller N, Schwarz MJ, Dehning S, Douhe A, Cerovecki A, Goldstein-Muller B, Spellmann I, Hetzel G, Maino K, Kleindienst N, Moller HJ, Arolt V, Riedel M (2006) The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry 11:680–684

    Article  CAS  PubMed  Google Scholar 

  • Nagatsu T, Mogi M, Ichinose H, Togari A (2000) Changes in cytokines and neurotrophins in Parkinson’s disease. J Neural Transm Suppl 60:277–290

    Google Scholar 

  • Okubadejo NU, Ojo OO, Oshinaike OO (2010) Clinical profile of parkinsonism and Parkinson’s disease in Lagos, Southwestern Nigeria. BMC Neurol 10:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Parent JM (2003) Injury-induced neurogenesis in the adult mammalian brain. Neuroscientist 9:261–272

    Article  PubMed  Google Scholar 

  • Perera TD, Dwork AJ, Keegan KA, Thirumangalakudi L, Lipira CM, Joyce N, Lange C, Higley JD, Rosoklija G, Hen R, Sackeim HA, Coplan JD (2011) Necessity of hippocampal neurogenesis for the therapeutic action of antidepressants in adult nonhuman primates. PLoS ONE 6:e17600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petri R, Pircs K, Jonsson ME, Akerblom M, Brattas PL, Klussendorf T, Jakobsson J (2017) let-7 regulates radial migration of new-born neurons through positive regulation of autophagy. EMBO J 36:1379–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poewe W (2008) Non-motor symptoms in Parkinson’s disease. Eur J Neurol 15(Suppl 1):14–20

    Article  PubMed  Google Scholar 

  • Qin XY, Zhang SP, Cao C, Loh YP, Cheng Y (2016) Aberrations in peripheral inflammatory cytokine levels in Parkinson disease: a systematic review and meta-analysis. JAMA Neurol 73:1316–1324

    Article  PubMed  Google Scholar 

  • Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, Overholser JC, Roth BL, Stockmeier CA (1999) Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 45:1085–1098

    Article  CAS  PubMed  Google Scholar 

  • Ravina B, Camicioli R, Como PG, Marsh L, Jankovic J, Weintraub D, Elm J (2007) The impact of depressive symptoms in early Parkinson disease. Neurology 69:342–347

    Article  CAS  PubMed  Google Scholar 

  • Rideout HJ, Lang-Rollin I, Stefanis L (2004) Involvement of macroautophagy in the dissolution of neuronal inclusions. Int J Biochem Cell Biol 36:2551–2562

    Article  CAS  PubMed  Google Scholar 

  • Rusch BD, Abercrombie HC, Oakes TR, Schaefer SM, Davidson RJ (2001) Hippocampal morphometry in depressed patients and control subjects: relations to anxiety symptoms. Biol Psychiatry 50:960–964

    Article  CAS  PubMed  Google Scholar 

  • Sahay A, Hen R (2007) Adult hippocampal neurogenesis in depression. Nat Neurosci 10:1110–1115

    Article  CAS  PubMed  Google Scholar 

  • Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Rubinsztein DC (2006) Inositol and IP3 levels regulate autophagy: biology and therapeutic speculations. Autophagy 2:132–134

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Uchihara T, Fukuda T, Noda S, Kondo H, Saiki S, Komatsu M, Uchiyama Y, Tanaka K, Hattori N (2018) Loss of autophagy in dopaminergic neurons causes Lewy pathology and motor dysfunction in aged mice. Sci Rep 8:2813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sawada M, Imamura K, Nagatsu T (2006) Role of cytokines in inflammatory process in Parkinson’s disease. J Neural Transm Suppl 70:373–381

    Article  CAS  Google Scholar 

  • Schoenfeld TJ, McCausland HC, Morris HD, Padmanaban V, Cameron HA (2017) Stress and loss of adult neurogenesis differentially reduce hippocampal volume. Biol Psychiatry 82(12):914–923. https://doi.org/10.1016/j.biopsych.2017.05.013

    Article  PubMed  PubMed Central  Google Scholar 

  • Schondorf DC, Aureli M, McAllister FE, Hindley CJ, Mayer F, Schmid B, Sardi SP, Valsecchi M, Hoffmann S, Schwarz LK, Hedrich U, Berg D, Shihabuddin LS, Hu J, Pruszak J, Gygi SP, Sonnino S, Gasser T, Deleidi M (2014) iPSC-derived neurons from GBA1-associated Parkinson’s disease patients show autophagic defects and impaired calcium homeostasis. Nat Commun 5:4028

    Article  PubMed  CAS  Google Scholar 

  • Schrag A (2006) Quality of life and depression in Parkinson’s disease. J Neurol Sci 248:151–157

    Article  PubMed  Google Scholar 

  • Schrag A, Jahanshahi M, Quinn N (2000) What contributes to quality of life in patients with Parkinson’s disease? J Neurol Neurosurg Psychiatry 69:308–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva R, Mesquita AR, Bessa J, Sousa JC, Sotiropoulos I, Leao P, Almeida OF, Sousa N (2008) Lithium blocks stress-induced changes in depressive-like behavior and hippocampal cell fate: the role of glycogen-synthase-kinase-3beta. Neuroscience 152:656–669

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Mishra A, Mishra SK, Shukla S (2017) ALCAR promote adult hippocampal neurogenesis by regulating cell-survival and cell death-related signals in rat model of Parkinson’s disease like-phenotypes. Neurochem Int 108:388–396

    Article  CAS  PubMed  Google Scholar 

  • Son H, Yu IT, Hwang SJ, Kim JS, Lee SH, Lee YS, Kaang BK (2003) Lithium enhances long-term potentiation independently of hippocampal neurogenesis in the rat dentate gyrus. J Neurochem 85:872–881

    Article  CAS  PubMed  Google Scholar 

  • Song H, Stevens CF, Gage FH (2002) Astroglia induce neurogenesis from adult neural stem cells. Nature 417:39–44

    Article  CAS  PubMed  Google Scholar 

  • Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, Gindi R, Adame A, Wyss-Coray T, Masliah E (2009) Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci 29:13578–13588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steffens DC, Byrum CE, McQuoid DR, Greenberg DL, Payne ME, Blitchington TF, MacFall JR, Krishnan KR (2000) Hippocampal volume in geriatric depression. Biol Psychiatry 48:301–309

    Article  CAS  PubMed  Google Scholar 

  • Stoykova A, Gruss P (1994) Roles of Pax-genes in developing and adult brain as suggested by expression patterns. J Neurosci 14:1395–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung YH (2015) Effects of treadmill exercise on hippocampal neurogenesis in an MPTP/probenecid-induced Parkinson’s disease mouse model. J Phys Ther Sci 27:3203–3206

    Article  PubMed  PubMed Central  Google Scholar 

  • Tajiri N, Quach DM, Kaneko Y, Wu S, Lee D, Lam T, Hayama KL, Hazel TG, Johe K, Wu MC, Borlongan CV (2017) NSI-189, a small molecule with neurogenic properties, exerts behavioral, and neurostructural benefits in stroke rats. J Cell Physiol 232:2731–2740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takamura N, Nakagawa S, Masuda T, Boku S, Kato A, Song N, An Y, Kitaichi Y, Inoue T, Koyama T, Kusumi I (2014) The effect of dopamine on adult hippocampal neurogenesis. Prog Neuropsychopharmacol Biol Psychiatry 50:116–124

    Article  CAS  PubMed  Google Scholar 

  • Tang MM, Lin WJ, Zhang JT, Zhao YW, Li YC (2017) Exogenous FGF2 reverses depressive-like behaviors and restores the suppressed FGF2-ERK1/2 signaling and the impaired hippocampal neurogenesis induced by neuroinflammation. Brain Behav Immun 66:322–331

    Article  CAS  PubMed  Google Scholar 

  • Tashiro A, Sandler VM, Toni N, Zhao C, Gage FH (2006) NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature 442:929–933

    Article  CAS  PubMed  Google Scholar 

  • Todorova A, Jenner P, Ray Chaudhuri K (2014) Non-motor Parkinson’s: integral to motor Parkinson’s, yet often neglected. Pract Neurol 14:310–322

    Article  PubMed  PubMed Central  Google Scholar 

  • Troeung L, Egan SJ, Gasson N (2013) A meta-analysis of randomised placebo-controlled treatment trials for depression and anxiety in Parkinson’s disease. PLoS ONE 8:e79510

    Article  PubMed  PubMed Central  Google Scholar 

  • Uchida S, Hara K, Kobayashi A, Fujimoto M, Otsuki K, Yamagata H, Hobara T, Abe N, Higuchi F, Shibata T, Hasegawa S, Kida S, Nakai A, Watanabe Y (2011) Impaired hippocampal spinogenesis and neurogenesis and altered affective behavior in mice lacking heat shock factor 1. Proc Natl Acad Sci USA 108:1681–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valero J, Mastrella G, Neiva I, Sanchez S, Malva JO (2014) Long-term effects of an acute and systemic administration of LPS on adult neurogenesis and spatial memory. Front Neurosci 8:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Vallieres L, Campbell IL, Gage FH, Sawchenko PE (2002) Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J Neurosci 22:486–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270

    Article  PubMed  Google Scholar 

  • van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Liang CC, Bian ZC, Zhu Y, Guan JL (2013) FIP200 is required for maintenance and differentiation of postnatal neural stem cells. Nat Neurosci 16:532–542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wexler EM, Geschwind DH, Palmer TD (2008) Lithium regulates adult hippocampal progenitor development through canonical Wnt pathway activation. Mol Psychiatry 13:285–292

    Article  CAS  PubMed  Google Scholar 

  • Whitney NP, Eidem TM, Peng H, Huang Y, Zheng JC (2009) Inflammation mediates varying effects in neurogenesis: relevance to the pathogenesis of brain injury and neurodegenerative disorders. J Neurochem 108:1343–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams-Gray CH, Wijeyekoon R, Yarnall AJ, Lawson RA, Breen DP, Evans JR, Cummins GA, Duncan GW, Khoo TK, Burn DJ, Barker RA, Icicle-Pd study group (2016) Serum immune markers and disease progression in an incident Parkinson’s disease cohort (ICICLE-PD). Mov Disord 31:995–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winner B, Winkler J (2015) Adult neurogenesis in neurodegenerative diseases. Cold Spring Harb Perspect Biol 7:a021287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winner B, Desplats P, Hagl C, Klucken J, Aigner R, Ploetz S, Laemke J, Karl A, Aigner L, Masliah E, Buerger E, Winkler J (2009) Dopamine receptor activation promotes adult neurogenesis in an acute Parkinson model. Exp Neurol 219:543–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winner B, Melrose HL, Zhao C, Hinkle KM, Yue M, Kent C, Braithwaite AT, Ogholikhan S, Aigner R, Winkler J, Farrer MJ, Gage FH (2011) Adult neurogenesis and neurite outgrowth are impaired in LRRK2 G2019S mice. Neurobiol Dis 41:706–716

    Article  CAS  PubMed  Google Scholar 

  • Xi Y, Dhaliwal JS, Ceizar M, Vaculik M, Kumar KL, Lagace DC (2016) Knockout of Atg5 delays the maturation and reduces the survival of adult-generated neurons in the hippocampus. Cell Death Dis 7:e2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong N, Xiong J, Jia M, Liu L, Zhang X, Chen Z, Huang J, Zhang Z, Hou L, Luo Z, Ghoorah D, Lin Z, Wang T (2013) The role of autophagy in Parkinson’s disease: rotenone-based modeling. Behav Brain Funct 9:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yazdankhah M, Farioli-Vecchioli S, Tonchev AB, Stoykova A, Cecconi F (2014) The autophagy regulators Ambra1 and Beclin 1 are required for adult neurogenesis in the brain subventricular zone. Cell Death Dis 5:e1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Duan C, Yang H (2015) Defective autophagy in Parkinson’s disease: lessons from genetics. Mol Neurobiol 51:89–104

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Teng EM, Summers RG Jr, Ming GL, Gage FH (2006) Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci 26:3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuo C, Xue R, Luo L, Ji F, Tian H, Qu H, Lin X, Jiang R, Tao R (2017) Efficacy of antidepressive medication for depression in Parkinson disease: a network meta-analysis. Medicine 96:e6698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zonis S, Ljubimov VA, Mahgerefteh M, Pechnick RN, Wawrowsky K, Chesnokova V (2013) p21Cip restrains hippocampal neurogenesis and protects neuronal progenitors from apoptosis during acute systemic inflammation. Hippocampus 23:1383–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zonis S, Pechnick RN, Ljubimov VA, Mahgerefteh M, Wawrowsky K, Michelsen KS, Chesnokova V (2015) Chronic intestinal inflammation alters hippocampal neurogenesis. J Neuroinflammation 12:65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the GRRC program of Gyeonggi province (#GRRC-CHA2017-A02, Validity and Safety Evaluation of Regional Specialized Resources) and the Grants #2015R1D1A1A01059598, #2015M3A9E1028326, #2016R1C1B1011117 and #2016M3A9E8941671 from the Ministry of Science, ICT & Future Planning through the National Research Foundation of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Jin Choi.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, J., Bang, Y. & Choi, H.J. Abnormal hippocampal neurogenesis in Parkinson’s disease: relevance to a new therapeutic target for depression with Parkinson’s disease. Arch. Pharm. Res. 41, 943–954 (2018). https://doi.org/10.1007/s12272-018-1063-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-018-1063-x

Keywords

Navigation