Skip to main content
Log in

Realgar transforming solution suppresses angiogenesis and tumor growth by inhibiting VEGF receptor 2 signaling in vein endothelial cells

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Realgar (As4S4), as an arsenic sulfide mineral drug, has a good therapeutic reputation for anticancer in Traditional Chinese Medicine, and has recently been reported to inhibit angiogenesis in tumor growth. However, considering the poor solubility and low bioavailability of realgar, large dose of realgar and long period of treatment are necessary for achieving the effective blood medicine concentration. In present study, we resolved the crucial problem of poor solubility of realgar by using intrinsic biotransformation in microorganism, and investigated underlying mechanisms of realgar transforming solution (RTS) for antiangiogenesis. Our results demonstrated that RTS had a strong activity to inhibit HUVECs proliferation, migration, invasion, and tube formation. Moreover, RTS inhibited VEGF/bFGF-induced phosphorylation of VEGFR2 and the downstream protein kinases including ERK, FAK, and Src. In vivo zebrafish and chicken chorioallantoic membrane model experiments showed that RTS remarkably blocked angiogenesis. Finally, compared with the control, administration of 2.50 mg/kg RTS reached more than 50% inhibition against H22 tumor allografts in KM mice, but caused few toxic effects in the host. The antiangiogenic effect was indicated by CD31 immunohistochemical staining and alginate-encapsulated tumor cell assay. In summary, our findings suggest that RTS inhibits angiogenesis and may be a potential drug candidate in anticancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Husein B, Abdalla M, Trepte M, Deremer DL, Somanath PR (2012) Antiangiogenic therapy for cancer: an update. Pharmacotherapy 32:1095–1111

    Article  CAS  Google Scholar 

  • Bianchini LF, Arruda MF, Vieira SR, Campelo PM, Gregio AM, Rosa EA (2015) Microbial biotransformation to obtain new antifungals. Front Microbiol. https://doi.org/10.3389/fmicb.2015.01433

    Article  PubMed  PubMed Central  Google Scholar 

  • Carmeliet P (2005) VEGF as a key mediator of angiogenesis in cancer. Oncology 69(Suppl 3):4–10

    Article  CAS  Google Scholar 

  • Chen P, Yan L, Leng F, Nan W, Yue X, Zheng Y, Feng N, Li H (2011a) Bioleaching of realgar by Acidithiobacillus ferrooxidans using ferrous iron and elemental sulfur as the sole and mixed energy sources. Bioresour Technol 102:3260–3267

    Article  CAS  Google Scholar 

  • Chen SJ, Zhou GB, Zhang XW, Mao JH, De The H, Chen Z (2011b) From an old remedy to a magic bullet: molecular mechanisms underlying the therapeutic effects of arsenic in fighting leukemia. Blood 117:6425–6437

    Article  CAS  Google Scholar 

  • Claesson-Welsh L, Welsh M (2013) VEGFA and tumour angiogenesis. J Intern Med 273:114–127

    Article  CAS  Google Scholar 

  • Committee CP (2010) Pharmacopoeia of the Peoples Republic of China. China Medical Science Press, Beijing

    Google Scholar 

  • Farzan SF, Karagas MR, Chen Y (2013) In utero and early life arsenic exposure in relation to long-term health and disease. Toxicol Appl Pharmacol 272:384–390

    Article  CAS  Google Scholar 

  • Ferrara N, Gerber HP, Lecouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  CAS  Google Scholar 

  • Garry MR, Santamaria AB, Williams AL, Desesso JM (2015) In utero arsenic exposure in mice and early life susceptibility to cancer. Regul Toxicol Pharmacol 73:378–390

    Article  CAS  Google Scholar 

  • Hamming LC, Slotman BJ, Verheul HM, Thijssen VL (2017) The clinical application of angiostatic therapy in combination with radiotherapy: past, present, future. Angiogenesis 20:217–232

    Article  Google Scholar 

  • Hanrahan EO, Heymach JV (2007) Vascular endothelial growth factor receptor tyrosine kinase inhibitors vandetanib (ZD6474) and AZD2171 in lung cancer. Clin Cancer Res 13:s4617–4622

    Article  Google Scholar 

  • Hoffmann J, Schirner M, Menrad A, Schneider MR (1997) A highly sensitive model for quantification of in vivo tumor angiogenesis induced by alginate-encapsulated tumor cells. Cancer Res 57:3847–3851

    CAS  PubMed  Google Scholar 

  • Holmes K, Roberts OL, Thomas AM, Cross MJ (2007) Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 19:2003–2012

    Article  CAS  Google Scholar 

  • Jour G, Ivan D, Aung PP (2016) Angiogenesis in melanoma: an update with a focus on current targeted therapies. J Clin Pathol 69:472–483

    Article  CAS  Google Scholar 

  • Liu D, Zhi D, Zhou T, Yu Q, Wan F, Bai Y, Li H (2013) Realgar bioleaching solution is a less toxic arsenic agent in suppressing the Ras/MAPK pathway in Caenorhabditis elegans. Environ Toxicol Pharmacol 35:292–299

    Article  CAS  Google Scholar 

  • Nooris M, Aparna D, Radha S (2016) Synthesis and characterization of MFe2O4 (M = Co, Ni, Mn) magnetic nanoparticles for modulation of angiogenesis in chick chorioallantoic membrane (CAM). Eur Biophys J 45:139–148

    Article  CAS  Google Scholar 

  • Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7:359–371

    Article  CAS  Google Scholar 

  • Ribatti D (2016) The chick embryo chorioallantoic membrane (CAM). A multifaceted experimental model. Mech Dev 141:70–77

    Article  CAS  Google Scholar 

  • Roh C (2014) Microbial transformation of bioactive compounds and production of ortho-dihydroxyisoflavones and glycitein from natural fermented soybean paste. Biomolecules 4:1093–1101

    Article  Google Scholar 

  • Roskoski R Jr (2017) Vascular endothelial growth factor (VEGF) and VEGF receptor inhibitors in the treatment of renal cell carcinomas. Pharmacol Res 120:116–132

    Article  CAS  Google Scholar 

  • Saraswati S, Agrawal SS (2013) Brucine, an indole alkaloid from Strychnos nux-vomica attenuates VEGF-induced angiogenesis via inhibiting VEGFR2 signaling pathway in vitro and in vivo. Cancer Lett 332:83–93

    Article  CAS  Google Scholar 

  • Song P, Chen P, Wang D, Wu Z, Gao Q, Wang A, Zhu R, Wang Y, Wang X, Zhao L, Duan Z, Zhu S, Cui P, Li Y, Li H (2017) Realgar transforming solution displays anticancer potential against human hepatocellular carcinoma HepG2 cells by inducing ROS. Int J Oncol 50:660–670

    Article  CAS  Google Scholar 

  • Wang X, Zhang X, Xu Z, Wang Z, Yue X, Li H (2013) Reversal effect of arsenic sensitivity in human leukemia cell line K562 and K562/ADM using realgar transforming solution. Biol Pharm Bull 36:641–648

    Article  Google Scholar 

  • Wang G, Zhang T, Sun W, Wang H, Yin F, Wang Z, Zuo D, Sun M, Zhou Z, Lin B, Xu J, Hua Y, Li H, Cai Z (2017) Arsenic sulfide induces apoptosis and autophagy through the activation of ROS/JNK and suppression of Akt/mTOR signaling pathways in osteosarcoma. Free Radic Biol Med 106:24–37

    Article  CAS  Google Scholar 

  • Woo SH, Park MJ, An S, Lee HC, Jin HO, Lee SJ, Gwak HS, Park IC, Hong SI, Rhee CH (2005) Diarsenic and tetraarsenic oxide inhibit cell cycle progression and bFGF- and VEGF-induced proliferation of human endothelial cells. J Cell Biochem 95:120–130

    Article  CAS  Google Scholar 

  • Xi S, Peng Y, Minuk GY, Shi M, Fu B, Yang J, Li Q, Gong Y, Yue L, Li L, Guo J, Peng Y, Wang Y (2016) The combination effects of Shen-Ling-Bai-Zhu on promoting apoptosis of transplanted H22 hepatocellular carcinoma in mice receiving chemotherapy. J Ethnopharmacol 190:1–12

    Article  Google Scholar 

  • Zhang X, Xie QJ, Wang X, Wang B, Li HY (2010) Biological extraction of realgar by Acidithiobacillus ferrooxidans and its in vitro and in vivo antitumor activities. Pharm Biol 48:40–47

    Article  Google Scholar 

  • Zhang S, Cao Z, Tian H, Shen G, Ma Y, Xie H, Liu Y, Zhao C, Deng S, Yang Y, Zheng R, Li W, Zhang N, Liu S, Wang W, Dai L, Shi S, Cheng L, Pan Y, Feng S, Zhao X, Deng H, Yang S, Wei Y (2011) SKLB1002, a novel potent inhibitor of VEGF receptor 2 signaling, inhibits angiogenesis and tumor growth in vivo. Clin Cancer Res 17:4439–4450

    Article  CAS  Google Scholar 

  • Zhao QH, Zhang Y, Liu Y, Wang HL, Shen YY, Yang WJ, Wen LP (2010) Anticancer effect of realgar nanoparticles on mouse melanoma skin cancer in vivo via transdermal drug delivery. Med Oncol 27:203–212

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Sub-Project of National Science and Technology Major Projects for "Major New Drugs Innovation and Development" (2015ZX09501-004-003-008); the National Natural Science Foundation of China (grant numbers 81560715, 81403145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Li.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, P., Hai, Y., Wang, X. et al. Realgar transforming solution suppresses angiogenesis and tumor growth by inhibiting VEGF receptor 2 signaling in vein endothelial cells. Arch. Pharm. Res. 41, 467–480 (2018). https://doi.org/10.1007/s12272-018-1014-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-018-1014-6

Keywords

Navigation