Skip to main content
Log in

Linear diarylheptanoids as potential anticancer therapeutics: synthesis, biological evaluation, and structure–activity relationship studies

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

In efforts to develop effective anticancer therapeutics with greater selectivity toward cancerous cell and reduced side-effects, such as emetic effects due to detrimental action of the drug toward the intestinal flora, a series of linear diarylheptanoids (LDHs) were designed and synthesized in 7 steps with good-to-moderate yields. All synthesized compounds were evaluated for their antibacterial, antiproliferative, and topoisomerase-I and -IIα inhibitory activity. Overall, all compounds showed little to no activity against the bacterial strains tested. Most of the synthesized compounds showed good antiproliferative activity against human breast cancer cell lines (T47D); specifically, the IC50 values of compounds 6a, 6d, 7j, and 7e were 0.09, 0.64, 0.67, and 0.99 μM, respectively. Among the tested compounds, 7b inhibited topo-I by 9.3% (camptothecin 68.8%), 7e and 7h inhibited topo-IIα by 38.4 and 47.4% (etoposide 76.9%), respectively, at the concentration of 100 μM. These results suggest that a set of promising anticancer agents can be obtained by reducing inhibitory actions on different microbes to provide enhanced selectivity against cancerous cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ahmad P, Woo H, Jun K-Y, Kadi AA, Abdel-Aziz HA, Kwon Y, Rahman AM (2016) Design, synthesis, topoisomerase I & II inhibitory activity, antiproliferative activity, and structure–activity relationship study of pyrazoline derivatives: an ATP-competitive human topoisomerase IIα catalytic inhibitor. Bioorganic Med Chem Lett 24:1898–1908

    CAS  Google Scholar 

  • Akazawa H, Akihisa T, Taguchi Y, Banno N, Yoneima R, Yasukawa K (2006) Melanogenesis inhibitory and free radical scavenging activities of diarylheptanoids and other phenolic compounds from the bark of Acer nikoense. Biol Pharm Bull 29:1970–1972

    CAS  PubMed  Google Scholar 

  • Alves LV, Do Canto-Cavalheiro MM, Cysne-Finkelstein L, Leon L (2003) In vitro antiproliferative effects of several diaryl derivatives on Leishmania spp. Biol Pharm Bull 26:453–456

    CAS  PubMed  Google Scholar 

  • Alves LV, Cysne-Finkelstein L, Temporal RM, Genestra MS, Leon LL (2004) An effective diaryl derivative against Leishmania amazonensis and its influence on the parasite X macrophage interaction. J Enzyme Inhib Med Chem 19:437–439

    CAS  PubMed  Google Scholar 

  • An N, Zhang H-W, Xu L-Z, Yang S-L, Zou Z-M (2010) New diarylheptanoids from the rhizome of Alpinia officinarum hance. Food Chem 119:513–517

    CAS  Google Scholar 

  • Berenblum I (1941) The cocarcinogenic action of croton resin. Cancer Res 1:44–48

    CAS  Google Scholar 

  • Bhosale S, Vyavahare VP, Prasad UV, Palle VP, Bhuniya D (2011) Stereo-conserved synthesis of syn-diarylheptanoids, active principles of Zingiber, starting from d-glucose. Tetrahedron Lett 52:3397–3400

    CAS  Google Scholar 

  • Bryant VC, Kishore Kumar GD, Nyong AM, Natarajan A (2012) Synthesis and evaluation of macrocyclic diarylether heptanoid natural products and their analogs. Bioorganic Med Chem Lett 22:245–248

    CAS  Google Scholar 

  • Changtam C, De Koning HP, Ibrahim H, Sajid MS, Gould MK, Suksamrarn A (2010) Curcuminoid analogs with potent activity against Trypanosoma and Leishmania species. Eur J Med Chem 45:941–956

    CAS  PubMed  Google Scholar 

  • Chareonkla A, Pohmakotr M, Reutrakul V, Yoosook C, Kasisit J, Napaswad C, Tuchinda P (2011) A new diarylheptanoid from the rhizomes of Zingiber mekongense. Fitoterapia 82:534–538

    CAS  PubMed  Google Scholar 

  • Chen S-D, Gao J-T, Liu J-G, Liu B, Zhao R-Z, Lu C-J (2015) Five new diarylheptanoids from the rhizomes of Curcuma kwangsiensis and their antiproliferative activity. Fitoterapia 102:67–73

    CAS  PubMed  Google Scholar 

  • Cho SM, Kwon YM, Lee JH, Yon KH, Lee MW (2002) Melanogenesis inhibitory activities of diarylheptanoids from Alnus hirsuta turcz in B16 mouse melanoma cell. Arch Pharm Res 25:885–888

    CAS  PubMed  Google Scholar 

  • Crespo-Ortiz MP, Wei MQ (2012) Antitumor activity of artemisinin and its derivatives: from a well-known antimalarial agent to a potential anticancer drug. J Biomed Biotechnol. https://doi.org/10.1155/2012/247597

    Article  PubMed  Google Scholar 

  • Dhuru S, Bhedi D, Gophane D, Hirbhagat K, Nadar V, More D, Parikh S, Dalal R, Fonseca LC, Kharas F, Vadnal PY, Vishwakarma RA, Sivaramakrishnan H (2011) Novel diarylheptanoids as inhibitors of TNF-α production. Bioorganic Med Chem Lett 213:784–3787

    Google Scholar 

  • Ding PN, Lord SJ, Gebski V, Links M, Bray V, Gralla RJ, Yang JC-H, Lee CK (2016) Risk of treatment-related toxicities from EGFR tyrosine kinase inhibitors: a meta-analysis of clinical trials of gefitinib, erlotinib, and afatinib in advanced EGFR-mutated non-small cell lung cancer. J Thorac Oncol 12:633–643

    PubMed  Google Scholar 

  • Dinić J, Ranđelović T, Stanković T, Dragoj M, Isaković A, Novaković M, Pešić M (2015) Chemo-protective and regenerative effects of diarylheptanoids from the bark of black alder (Alnus glutinosa) in human normal keratinocytes. Fitoterapia 105:169–176

    PubMed  Google Scholar 

  • Dinić J, Novaković M, Podolski-Renić A, Vajs V, Tešević V, Isaković A, Pešić M (2016) Structural differences in diarylheptanoids analogues from Alnus viridis and Alnus glutinosa influence their activity and selectivity towards cancer cells. Chem Biol Interact 249:36–45

    PubMed  Google Scholar 

  • Dong G-Z, Lee SY, Zhao H-Y, Lee Y-I, Jeong JH, Jeon R, Lee HJ, Ryu J-H (2015) Diarylheptanoids from lesser galangal suppress human colon cancer cell growth through modulating Wnt/β-catenin pathway. J Funct Foods 18 (Part A):47–57

    CAS  Google Scholar 

  • El-Halawany AM, Hattori M (2012) Anti-oestrogenic diarylheptanoids from Aframomum melegueta with in silico oestrogen receptor alpha binding conformation similar to enterodiol and enterolactone. Food Chem 134:219–226

    CAS  Google Scholar 

  • Gilli C, Orlowska E, Kaiser D, Steyrer J, Rathgeb A, Lorbeer E, Brecker L, Schinnerl J (2014) Diarylheptanoids, flavonoids and other constituents from two neotropical Renealmia species (Zingiberaceae). Biochem Syst Ecol 56:178–184

    CAS  Google Scholar 

  • Gonzalez GI, Zhu J (1997) First total synthesis of acerogenin C and aceroside IV. J Org Chem 62:7544–7545

    CAS  Google Scholar 

  • Gonzalez GI, Zhu J (1999) A Unified strategy toward the synthesis of acerogenin-type macrocycles: total syntheses of acerogenins A, B, C, and L and aceroside IV. J Org Chem 64:914–924

    CAS  PubMed  Google Scholar 

  • Grienke U, Schmidtke M, Kirchmair J, Pfarr K, Wutzler P, Dürrwald R, Wolber G, Liedl KR, Stuppner H, Rollinger JM (2010) Antiviral potential and molecular insight into neuraminidase inhibiting diarylheptanoids from Alpinia katsumadai. J Med Chem 53:778–786

    CAS  PubMed  Google Scholar 

  • Han J-M, Lee WS, Kim J-R, Son J, Nam K-H, Choi S-C, Lim J-S, Jeong T-S (2007) Effects of diarylheptanoids on the tumor necrosis factor-α-induced expression of adhesion molecules in human umbilical vein endothelial cells. J Agric Food Chem 55:9457–9464

    CAS  PubMed  Google Scholar 

  • Intapad S, Suksamrarn A, Piyachaturawat P (2009) Enhancement of vascular relaxation in rat aorta by phytoestrogens from Curcuma comosa Roxb. Vascul Pharmacol 51:284–290

    CAS  PubMed  Google Scholar 

  • Ishida J, Kozuka M, Wang H-K, Konoshima T, Tokuda H, Okuda M, Yang Mou X, Nishino H, Sakurai N, Lee K-H, Nagai M (2000) Antitumor-promoting effects of cyclic diarylheptanoids on Epstein-Barr virus activation and two-stage mouse skin carcinogenesis. Cancer Lett 159:135–140

    CAS  PubMed  Google Scholar 

  • Islam MS, Park S, Song C, Kadi AA, Kwon Y, Rahman AM (2017) Fluorescein hydrazones: a series of novel non-intercalative topoisomerase IIα catalytic inhibitors induce G1 arrest and apoptosis in breast and colon cancer cells. Eur J Med Chem 125:49–67

    CAS  PubMed  Google Scholar 

  • Jeong B-S, Wang Q, Son J-K, Jahng Y (2007) A versatile synthesis of cyclic diphenyl ether-type diarylheptanoids: acerogenins, (±)-galeon, and (±)-pterocarine. Eur J Org Chem 2007:1338–1344

    Google Scholar 

  • Jun KY, Kwon H, Park SE, Lee E, Karki R, Thapa P, Lee JH, Lee ES, Kwon Y (2014) Discovery of dihydroxylated 2,4-diphenyl-6-thiophen-2-yl-pyridine as a non-intercalative DNA-binding topoisomerase II-specific catalytic inhibitor. Eur J Med Chem 80:428–438

    PubMed  Google Scholar 

  • Kaewamatawong R, Boonchoong P, Teerawatanasuk N (2009) Diarylheptanoids from Curcuma comosa. Phytochem Lett 2:19–21

    CAS  Google Scholar 

  • Kang HM, Son KH, Yang DC, Han DC, Kim JH, Baek NI, Kwon BM (2004) Inhibitory activity of diarylheptanoids on farnesyl protein transferase. Nat Prod Res 18:295–299

    CAS  PubMed  Google Scholar 

  • Katakami N, Atagi S, Goto K, Hida T, Horai T, Inoue A, Ichinose Y, Koboyashi K, Takeda K, Kiura K, Nishio K, Seki Y, Ebisawa R, Shahidi M, Yamamoto N (2013) LUX-Lung 4: a phase II trial of afatinib in patients with advanced non-small-cell lung cancer who progressed during prior treatment with erlotinib, gefitinib, or both. J Clin Oncol 31:3335–3341

    CAS  PubMed  Google Scholar 

  • Keserü GM, Nógrádi M (1995) The chemistry of natural diarylheptanoids. In: Rahman AU (ed) Studies in natural products chemistry, vol 17. Elsevier, Amsterdam, pp 357–394

    Google Scholar 

  • Keserü GM, Nógrádi M, Szöllösy Á (1998) Synthesis of acerogenin C and (+)-acerogenin A, two macrocyclic diarylheptanoid constituents of Acer nikoense. Eur J Org Chem 1998:521–524

    Google Scholar 

  • Kikuzaki H, Kobayashi M, Nakatani N (1991) Diarylheptanoids from rhizomes of Zingiber officinale. Phytochemistry 30:3647–3651

    CAS  Google Scholar 

  • Konno K, Sawamura R, Sun Y, Yasukawa K, Shimizu T, Watanabe W, Kato M, Yamamoto R, Kurokawa M (2011) Antiviral activities of diarylheptanoids isolated from Alpinia officinarum against respiratory syncytial virus, poliovirus, measles virus, and herpes simplex virus type 1 in vitro. Nat Prod Commun 6:1881–1884

    CAS  PubMed  Google Scholar 

  • Konno K, Miura M, Toriyama M, Motohashi S, Sawamura R, Watanabe W, Yoshida H, Kato M, Yamamoto R, Yasukawa K, Kurokawa M (2013) Antiviral activity of diarylheptanoid stereoisomers against respiratory syncytial virus in vitro and in vivo. J Nat Med 67:773–781

    CAS  PubMed  Google Scholar 

  • Lagnika L, Weniger B, Attioua B, Jensen O, Anthaume C, Sanni A, Kaiser M, Lobstein A, Vonthron-Senecheau C (2012) Trypanocidal activity of diarylheptanoids from Schrankia leptocarpa DC. S Afr J Bot 83:92–97

    CAS  Google Scholar 

  • Lai Y-C, Chen C-K, Lin W-W, Lee S-S (2012) A comprehensive investigation of anti-inflammatory diarylheptanoids from the leaves of Alnus formosana. Phytochemistry 73:84–94

    CAS  PubMed  Google Scholar 

  • Lee S-L, Huang W-J, Lin WW, Lee S-S, Chen C-H (2005) Preparation and anti-inflammatory activities of diarylheptanoid and diarylheptylamine analogs. Bioorganic Med Chem 13:6175–6181

    CAS  Google Scholar 

  • Lee HJ, Kim JS, Ryu JH (2006) Suppression of inducible nitric oxide synthase expression by diarylheptanoids from Alpinia officinarum. Planta Med 72:68–71

    CAS  PubMed  Google Scholar 

  • Lee CS, Ko HH, Seo SJ, Choi YW, Lee MW, Myung SC, Bang H (2009) Diarylheptanoid hirsutenone prevents tumor necrosis factor-α-stimulated production of inflammatory mediators in human keratinocytes through NF-κB inhibition. Int Immunopharmacol 9:1097–1104

    CAS  PubMed  Google Scholar 

  • Lee CS, Jang E-R, Kim YJ, Lee MS, Seo SJ, Lee MW (2010a) Hirsutenone inhibits lipopolysaccharide-activated NF-κB-induced inflammatory mediator production by suppressing Toll-like receptor 4 and ERK activation. Int Immunopharmacol 10:520–525

    CAS  PubMed  Google Scholar 

  • Lee MA, Lee HK, Kim SH, Kim YC, Sung SH (2010b) Chemical constituents of Alnus firma and their inhibitory activity on lipopolysaccharide-induced nitric oxide production in BV2 microglia. Planta Med 76:1007–1010

    CAS  PubMed  Google Scholar 

  • Lee KY, Jeong EJ, Huh J, Cho N, Kim TB, Jeon BJ, Kim SH, Kim HP, Sung SH (2012) Cognition-enhancing and neuroprotective activities of the standardized extract of Betula platyphylla bark and its major diarylheptanoids. Phytomedicine 19:1315–1320

    CAS  PubMed  Google Scholar 

  • Li T-K, Liu LF (2001) Tumor cell death induced by topoisomerase-targeting drugs. Annu Rev Pharmacol Toxicol 41:53–77

    PubMed  Google Scholar 

  • Li G, Lee S-Y, Lee K-S, Lee S-W, Kim S-H, Lee S-H, Lee C-S, Woo M-H, Son J-K (2003) DNA topoisomerases I and II inhibitory activity of constituents isolated from Juglans mandshurica. Arch Pharm Res 26:466–470

    PubMed  Google Scholar 

  • Liu D, Liu Y-W, Guan F-Q, Liang J-Y (2014a) New cytotoxic diarylheptanoids from the rhizomes of Alpinia officinarum Hance. Fitoterapia 96:76–80

    CAS  PubMed  Google Scholar 

  • Liu D, Qu W, Zhao L, Guan F-Q, Liang J-Y (2014b) A new dimeric diarylheptanoid from the rhizomes of Alpinia officinarum. Chin J Nat Med 12:139–141

    CAS  PubMed  Google Scholar 

  • Lv H, She G (2010) Naturally occurring diarylheptanoids. Nat Prod Commun 5:1687–1708

    CAS  PubMed  Google Scholar 

  • Masuda Y, Kikuzaki H, Hisamoto M, Nakatani N (2004) Antioxidant properties of gingerol related compounds from ginger. BioFactors 21:293–296

    CAS  PubMed  Google Scholar 

  • Matsuda H, Ando S, Kato T, Morikawa T, Yoshikawa M (2006) Inhibitors from the rhizomes of Alpinia officinarum on production of nitric oxide in lipopolysaccharide-activated macrophages and the structural requirements of diarylheptanoids for the activity. Bioorganic Med Chem 14:138–142

    CAS  Google Scholar 

  • Matsuda H, Nakashima S, Oda Y, Nakamura S, Yoshikawa M (2009) Melanogenesis inhibitors from the rhizomes of Alpinia officinarum in B16 melanoma cells. Bioorganic Med Chem 17:6048–6053

    CAS  Google Scholar 

  • Morikawa T, Matsuda H, Ninomiya K, Yoshikawa M (2002) Medicinal food stuffs. XXIX. Potent protective effects of sesquiterpenes and curcumin from Zedoariae rhizoma on liver injury induced by D-galactosamine/lipopolysaccharide or tumor necrosis factor-alpha. Biol Pharm Bull 25:627–631

    CAS  PubMed  Google Scholar 

  • Narasimhulu M, Srikanth Reddy T, Chinni Mahesh K, Sai Krishna A, Venkateswara Rao J, Venkateswarlu Y (2009) Synthesis of yashabushidiol and its analogues and their cytotoxic activity against cancer cell lines. Bioorganic Med Chem Lett 19:3125–3127

    CAS  Google Scholar 

  • Novaković M, Pešić M, Trifunović S, Vučković I, Todorović N, Podolski-Renić A, Dinić J, Stojković S, Tešević V, Vajs V, Milosavljević S (2014) Diarylheptanoids from the bark of black alder inhibit the growth of sensitive and multi-drug resistant non-small cell lung carcinoma cells. Phytochemistry 97:46–54

    PubMed  Google Scholar 

  • Ohtsu H, Itokawa H, Xiao Z, Su C-Y, Shih CCY, Chiang T, Chang E, Lee Y, Chiu S-Y, Chang C, Lee K-H (2003) Antitumor agents 222. Synthesis and anti-androgen activity of new diarylheptanoids. Bioorganic Med Chem 11:5083–5090

    CAS  Google Scholar 

  • Park S-D, Jung J-H, Lee H-W, Kwon Y-M, Chung K-H, Kim M-G, Kim C-H (2005) Zedoariae rhizoma and curcumin inhibits platelet-derived growth factor-induced proliferation of human hepatic myofibroblasts. Int Immunopharmacol 5:555–569

    CAS  PubMed  Google Scholar 

  • Park J-Y, Jeong HJ, Kim JH, Kim YM, Park S-J, Kim D, Park KH, Lee WS, Ryu YB (2012) Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biol Pharm Bull 35:2036–2042

    CAS  PubMed  Google Scholar 

  • Park SE, Chang IH, Jun KY, Lee E, Lee ES, Na Y, Kwon Y (2013) 3-(3-Butylamino-2-hydroxypropoxy)-1-hydroxyxanthen-9-one acts as a topoisomerase II alpha catalytic inhibitor with low DNA damage. Eur J Med Chem 69:139–145

    CAS  PubMed  Google Scholar 

  • Pitsinos EN, Vidali VP, Couladouros EA (2011) Diaryl ether formation in the synthesis of natural products. Eur J Org Chem 2011:1207–1222

    Google Scholar 

  • Pommier Y (2009) DNA topoisomerase I inhibitors: chemistry, biology, and interfacial inhibition. Chem Rev 109:2894–2902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ponomarenko J, Trouillas P, Martin N, Dizhbite T, Krasilnikova J, Telysheva G (2014) Elucidation of antioxidant properties of wood bark derived saturated diarylheptanoids: a comprehensive (DFT-supported) understanding. Phytochemistry 103:178–187

    CAS  PubMed  Google Scholar 

  • Prasain JK, Barnes S (2016) Novel Diarylheptanoids and metabolism and bioavailablity of curcumin. In: Rahman AU (ed) Studies in natural products chemistry, vol 47. Elsevier, Amsterdam, pp 201–214

    Google Scholar 

  • Rahman AFMM, Park S-E, Kadi AA, Kwon Y (2014) Fluorescein hydrazones as novel nonintercalative topoisomerase catalytic inhibitors with low DNA toxicity. J Med Chem 57:9139–9151

    CAS  PubMed  Google Scholar 

  • Rahman AFMM, Angawi RF, Kadi AA (2015) Spatial localisation of curcumin and rapid screening of the chemical compositions of turmeric rhizomes (Curcuma longa Linn.) using direct analysis in real time-mass spectrometry (DART-MS). Food Chem 173:489–494

    CAS  PubMed  Google Scholar 

  • Roughley PJ, Whiting DA (1973) Experiments in the biosynthesis of curcumin. J Chem Soc Perkin Trans 1:2379–2388

    Google Scholar 

  • Roy S, Hagen KD, Maheswari PU, Lutz M, Spek AL, Reedijk J, Van Wezel GP (2008) Phenanthroline derivatives with improved selectivity as DNA-targeting anticancer or antimicrobial drugs. ChemMedChem 3:1427–1434

    CAS  PubMed  Google Scholar 

  • Sabitha G, Chandrashekhar G, Yadagiri K, Yadav JS (2011a) Synthesis of diarylheptanoids, (5S)-5-acetoxy-1,7-bis(4-hydroxy-3-methoxyphenyl)-3-heptanone and (3S,5S)-3,5-diacetoxy-1,7-bis(4-hydroxy-3-methoxyphenyl)heptane. Tetrahedron Asymmetry 22:1729–1735

    CAS  Google Scholar 

  • Sabitha G, Srinivas C, Reddy TR, Yadagiri K, Yadav JS (2011b) Synthesis of gingerol and diarylheptanoids. Tetrahedron Asymmetry 22:2124–2133

    CAS  Google Scholar 

  • Sawamura R, Sun Y, Yasukawa K, Shimizu T, Watanabe W, Kurokawa M (2009) Antiviral activities of diarylheptanoids against influenza virus in vitro. J Nat Med 64:117–120

    PubMed  Google Scholar 

  • Sawamura R, Shimizu T, Sun Y, Yasukawa K, Miura M, Toriyama M, Motohashi S, Watanabe W, Konno K, Kurokawa M (2010) In vitro and in vivo anti-influenza virus activity of diarylheptanoids isolated from Alpinia officinarum. Antivir Chem Chemother 21:33–41

    CAS  PubMed  Google Scholar 

  • Saxena A, Yadav D, Maurya AK, Kumar A, Mohanty S, Gupta MM, Lingaraju MC, Yatoo MI, Thakur US, Bawankule DU (2016) Diarylheptanoids from Alnus nepalensis attenuates LPS-induced inflammation in macrophages and endotoxic shock in mice. Int Immunopharmacol 30:129–136

    CAS  PubMed  Google Scholar 

  • Simone JV (2000) Introduction to oncology. WB Saunders Company, Philadelphia

    Google Scholar 

  • Subramanian K, Selvakkumar C, Vinaykumar KS, Goswami N, Meenakshisundaram S, Balakrishnan A, Lakshmi BS (2009) Tackling multiple antibiotic resistance in enteropathogenic Escherichia coli (EPEC) clinical isolates: a diarylheptanoid from Alpinia officinarum shows promising antibacterial and immunomodulatory activity against EPEC and its lipopolysaccharide-induced inflammation. Int J Antimicrob Agents 33:244–250

    CAS  PubMed  Google Scholar 

  • Suksamrarn A, Ponglikitmongkol M, Wongkrajang K, Chindaduang A, Kittidanairak S, Jankam A, Yingyongnarongkul B-E, Kittipanumat N, Chokchaisiri R, Khetkam P, Piyachaturawat P (2008) Diarylheptanoids, new phytoestrogens from the rhizomes of Curcuma comosa: isolation, chemical modification and estrogenic activity evaluation. Bioorg Med Chem 16:6891–6902

    CAS  PubMed  Google Scholar 

  • Sun Y, Tabata K, Matsubara H, Kitanaka S, Suzuki T, Yasukawa K (2008) New cytotoxic diarylheptanoids from the rhizomes of Alpinia officinarum. Planta Med 74:427–431

    CAS  PubMed  Google Scholar 

  • Sun Y, Kurokawa M, Miura M, Kakegawa T, Motohashi S, Yasukawa K (2016) Bioactivity and synthesis of diarylheptanoids from Alpinia officinarum. In: Rahman AU (ed) Studies in natural products chemistry. Elsevier, Amsterdam, pp 157–187

    Google Scholar 

  • Tabata K, Yamazaki Y, Okada M, Fukumura K, Shimada A, Sun Y, Yasukawa K, Suzuki T (2009) Diarylheptanoids derived from Alpinia officinarum induce apoptosis, S-phase arrest and differentiation in human neuroblastoma cells. Anticancer Res 29:4981–4988

    CAS  PubMed  Google Scholar 

  • Takahashi M, Fuchino H, Sekita S, Satake M (2004) In vitro leishmanicidal activity of some scarce natural products. Phytother Res 18:573–578

    CAS  PubMed  Google Scholar 

  • Tian Z, An N, Zhou B, Xiao P, Kohane IS, Wu E (2009) Cytotoxic diarylheptanoid induces cell cycle arrest and apoptosis via increasing ATF3 and stabilizing p53 in SH-SY5Y cells. Cancer Chemother Pharmacol 63:1131–1139

    CAS  PubMed  Google Scholar 

  • Tung NH, Kwon H-J, Kim J-H, Ra JC, Ding Y, Kim JA, Kim YH (2010) Anti-influenza diarylheptanoids from the bark of Alnus japonica. Bioorganic Med Chem Lett 20:1000–1003

    CAS  Google Scholar 

  • Wang Q, Son JK, Jahng Y (2007) First total synthesis of cytotoxic diarylheptanoids, galeon, and pterocarine. Synth Commun 37:675–681

    CAS  Google Scholar 

  • Wei Q-Y, Ma J-P, Cai Y-J, Yang L, Liu Z-L (2005) Cytotoxic and apoptotic activities of diarylheptanoids and gingerol-related compounds from the rhizome of Chinese ginger. J Ethnopharmacol 102:177–184

    CAS  PubMed  Google Scholar 

  • Winuthayanon W, Suksen K, Boonchird C, Chuncharunee A, Ponglikitmongkol M, Suksamrarn A, Piyachaturawat P (2009) Estrogenic activity of diarylheptanoids from Curcuma comosa Roxb. requires metabolic activation. J Agric Food Chem 57:840–845

    CAS  PubMed  Google Scholar 

  • Woo KW, Moon E, Kwon OW, Lee SO, Kim SY, Choi SZ, Son MW, Lee KR (2013) Anti-neuroinflammatory diarylheptanoids from the rhizomes of Dioscorea nipponica. Bioorganic Med Chem Lett 23:3806–3809

    CAS  Google Scholar 

  • Yadav D, Singh SC, Verma RK, Saxena K, Verma R, Murthy PK, Gupta MM (2013) Antifilarial diarylheptanoids from Alnus nepalensis leaves growing in high altitude areas of Uttarakhand, India. Phytomedicine 20:124–132

    CAS  PubMed  Google Scholar 

  • Yamazaki R, Hatano H, Aiyama R, Matsuzaki T, Hashimoto S, Yokokura T (2000) Diarylheptanoids suppress expression of leukocyte adhesion molecules on human vascular endothelial cells. Eur J Pharmacol 404:375–385

    CAS  PubMed  Google Scholar 

  • Yasukawa K (2012) Medicinal and edible plants as cancer preventive agents. In: Vallisuta O (ed) Drug discovery research in pharmacognosy. InTech. https://doi.org/10.5772/34545

    Google Scholar 

  • Yasukawa K (2015) Edible and medicinal mushrooms as promising agents in cancer. In: Vallisuta O (ed) Drug discovery and development—from molecules to medicine. InTech. https://doi.org/10.5772/59964

    Google Scholar 

  • Yasukawa K, Takido M, Takeuchi M, Nakagawa S (1989) Effect of chemical constituents from plants on 12-O-tetradecanoylphorbol-13-acetate-induced inflammation in mice. Chem Pharm Bull 37:1071–1073

    CAS  PubMed  Google Scholar 

  • Yasukawa K, Sun Y, Kitanaka S, Tomizawa N, Miura M, Motohashi S (2008) Inhibitory effect of the rhizomes of Alpinia officinarum on TPA-induced inflammation and tumor promotion in two-stage carcinogenesis in mouse skin. J Nat Med 62:374–378

    CAS  PubMed  Google Scholar 

  • Yonezawa T, Lee J-W, Akazawa H, Inagaki M, Cha B-Y, Nagai K, Yagasaki K, Akihisa T, Woo J-T (2011) Osteogenic activity of diphenyl ether-type cyclic diarylheptanoids derived from Acer nikoense. Bioorganic Med Chem Lett 21:3248–3251

    CAS  Google Scholar 

  • Zhang B-B, Dai Y, Liao Z-X, Ding L-S (2010) Three new antibacterial active diarylheptanoids from Alpinia officinarum. Fitoterapia 81:948–952

    CAS  PubMed  Google Scholar 

  • Zhang Y, Ruan J, Li J, Chao L, Shi W, Yu H, Gao X, Wang T (2017) Bioactive diarylheptanoids and stilbenes from the rhizomes of Dioscorea septemloba Thunb. Fitoterapia 117:128–133

    Google Scholar 

  • Zhou CX, Zhang XY, Dong XW, Tao QF, Dou H, Zhang RP, Huang KX, Li XK, Chen CX, Zeng S, Zhao Y (2007) Three new diarylheptanoids and their antioxidant property. Chin Chem Lett 18:1243–1246

    Google Scholar 

  • Zhu J, Islas-Gonzalez G, Bois-Choussy M (2000) Recent progress in isolation, bioactivity evaluation and total synthesis of diarylheptanoids. Org Prep Proced Int 32:505–546

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSTIP Strategic Technologies Program (Number 12-MED-2439-02) in the Kingdom of Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. F. M. Motiur Rahman or Yurngdong Jahng.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motiur Rahman, A.F.M., Lu, Y., Lee, HJ. et al. Linear diarylheptanoids as potential anticancer therapeutics: synthesis, biological evaluation, and structure–activity relationship studies. Arch. Pharm. Res. 41, 1131–1148 (2018). https://doi.org/10.1007/s12272-018-1004-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-018-1004-8

Keywords

Profiles

  1. A. F. M. Motiur Rahman
  2. Youngjoo Kwon