Skip to main content
Log in

Dihydroxanthyletin-type coumarins from Angelica decursiva that inhibits the formation of advanced glycation end products and human recombinant aldose reductase

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

A Correction to this article was published on 12 January 2019

This article has been updated

Abstract

The formation of advanced glycation end-products (AGE) and aldose reductase activity have been implicated in the development of diabetic complications. The present study was aimed to evaluate human recombinant aldose reductase (HRAR) and AGE inhibitory activity of seven natural dihydroxanthyletin-type coumarins, 4-hydroxy Pd-C-III (1), 4′-methoxy Pd-C-I (2), Pd-C-I (3), Pd-C-II (4), Pd-C-III (5), decursidin (6), and (+)-trans-decursidinol (7) from Angelica decursiva. Coumarins 1–7 showed potent HRAR and AGE inhibitory activities with ranges of IC50 values of 1.03–21.31 and 0.41–5.56 µM, respectively. In the kinetic study for HRAR enzyme inhibition, coumarins 1, 3, 4, and 7 were competitive-type inhibitors, 6 was a mixed-type inhibitor, whereas 2 and 5 were noncompetitive-type inhibitors. Furthermore, we also predicted the docking interactions of HRAR with coumarins 1–7 using AutoDock Vina, and as a result, the simulated enzyme-inhibitor complexes exhibited negative binding energies (Autodock Vina = − 9.6 to − 8.1 kcal/mol for HRAR), indicating a high affinity and tight binding capacity for the HRAR active site. Our results clearly indicate the potential HRAR and AGE formation inhibitory activities of dihydroxanthyletin-type coumarins, which could be further explored to develop therapeutic modalities for the treatment of diabetes and related complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 12 January 2019

    The author would like to include conflict of interest statement of the online published article. The correct conflict of interest statement should read as: Conflict of interest The authors declare no conflict of interest.

  • 12 January 2019

    The author would like to include conflict of interest statement of the online published article. The correct conflict of interest statement should read as: Conflict of interest The authors declare no conflict of interest.

References

  • Ahmed N (2005) Advanced glycation endproducts: role in pathology of diabetic complications. Diabetes Res Clin Pract 67:3–21

    Article  CAS  PubMed  Google Scholar 

  • Ali MY, Jung HA, Choi JS (2015) Anti-diabetic and anti-Alzheimer’s disease activities of Angelica decursiva. Arch Pharm Res 38:2216–2227

    Article  Google Scholar 

  • Ali MY, Jannat S, Jung HA, Choi RJ, Roy A, Choi JS (2016a) Anti-Alzheimer potential of coumarins from Angelica decursiva and Artemisia capillaris and structure-activity analysis. Asian Pac J Trop Med 9:103–111

    Article  CAS  PubMed  Google Scholar 

  • Ali MY, Jannat S, Jung HA, Jeong HO, Chung HY, Choi JS (2016b) Coumarins from Angelica decursiva inhibit α-glucosidase activity and protein tyrosine phosphatase 1B. Chem Biol Interact 252:93–101

    Article  CAS  PubMed  Google Scholar 

  • Anand P, Singh B, Singh N (2012) A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg Med Chem 20:1175–1180

    Article  CAS  PubMed  Google Scholar 

  • Aragno M, Mastrocola R (2017) Dietary sugars and endogenous formation of advanced glycation endproducts: emerging mechanisms of disease. Nutrients 9:385–401

    Article  PubMed Central  Google Scholar 

  • Asif M (2015) Pharmacologically potentials of different substituted coumarin derivatives. Chem Int 1:1–11

    CAS  Google Scholar 

  • Bairagi SH, Salaskar PP, Loke SD, Surve NN, Tandel DV, Dusara MD (2012) Medicinal significance of coumarins. Int J Pharm Res 4:16–19

    CAS  Google Scholar 

  • Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  CAS  PubMed  Google Scholar 

  • Byun K, Yoo YC, Son M, Lee J, Jeong GB, Park YM, Salekdeh GH, Lee B (2017) Advanced glycation end-products produced systemically and by macrophages: a common contributor to inflammation and degenerative diseases. Pharmacol Ther 177:44–55

    Article  CAS  PubMed  Google Scholar 

  • Chang WC, Wu SC, Xu KD, Liao BC, Wu JF, Cheng AS (2015) Scopoletin protects against methylglyoxal-induced hyperglycemia and insulin resistance mediated by suppression of advanced glycation endproducts (AGEs) generation and anti-glycation. Molecules 20:2786–2801

    Article  PubMed  Google Scholar 

  • David RT, Gary BW, Anne UC (1992) Aldose reductase inhibitors and diabetic complications. Pharmacol Ther 54:151–194

    Article  Google Scholar 

  • de la Fuente JA, Manzanaro S (2003) Aldose reductase inhibitors from natural sources. Nat Prod Rep 20:243–251

    Article  PubMed  Google Scholar 

  • El-Kabbani O, Podjarny A (2007) Selectivity determinants of the aldose and aldehyde reductase inhibitor-binding sites. Cell Mol Life Sci 64:1970–1978

    Article  CAS  PubMed  Google Scholar 

  • El-Kabbani O, Old SE, Ginell SL, Carper DA (1999) Aldose and aldehyde reductases: structure-function studies on the coenzyme and inhibitor-binding sites. Mol Vis 5:20–26

    CAS  PubMed  Google Scholar 

  • Gao Q, Jeon SJ, Jung HA, Lee HE, Park SJ, Lee Y, Lee Y, Ko SY, Kim B, Choi JS, Ryu JH (2015) Nodakenin enhances cognitive function and adult hippocampal neurogenesis in mice. Neurochem Res 40:1438–1447

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Outes A, Suarez-Gea ML, Calvo-Rojas G, Lecumberri R, Rocha E, Pozo-Hernandez C, Terleira-Fernandez AI, Vargas-Castrillon E (2012) Discovery of anticoagulant drugs: a historical perspective. Curr Drug Discov Technol 9:83–104

    Article  CAS  PubMed  Google Scholar 

  • Ishita IJ, Islam MN, Kim YS, Choi RJ, Sohn HS, Jung HA, Choi JS (2016) Coumarins from Angelica decursiva inhibit lipopolysacharide-induced nitric oxide production in RAW 264.7 cells. Arch Pharm Res 39:115–126

    Article  CAS  PubMed  Google Scholar 

  • Islam MN, Choi RJ, Jin SE, Kim YS, Ahn BR, Zhao D, Jung HA, Choi JS (2012) Mechanism of anti-inflammatory activity of umbelliferone 6-carboxylic acid isolated from Angelica decursiva. J Ethnopharmacol 144:175–181

    Article  PubMed  Google Scholar 

  • Jung HA, Islam MN, Kwon YS, Jin SE, Son YK, Park JJ, Sohn HS, Choi JS (2011) Extraction and identification of three major aldose reductase inhibitors from Artemisia montana. Food Chem Toxicol 49:376–384

    Article  CAS  PubMed  Google Scholar 

  • Jung HA, Park JJ, Islam MN, Jin SE, Min BS, Lee JH, Sohn HS, Choi JS (2012) Inhibitory activity of coumarins from Artemisia capillaris against advanced glycation endproduct formation. Arch Pharm Res 35:1021–1035

    Article  CAS  PubMed  Google Scholar 

  • Jung HA, Ali MY, Jannat S, Park SK, Choi JS (2017) Molecular docking study and evaluation of the anti-diabetic complications of dihydroxanthyletin-type coumarins from Angelica decursiva. FASEB J 31:646.37

    Google Scholar 

  • Kaneko M, Bucciarelli M, Hwang YC, Lee L, Yan SF, Schmidt AM, Ramasamy R (2005) Aldose reductase and AGE-RAGE pathway: key players in myocardial ischemic injury. Ann NY Acad Sci 1043:702–709

    Article  CAS  PubMed  Google Scholar 

  • Kato A, Kobayashi K, Narukawa K, Minoshima Y, Adachi I, Hirono S, Nash RJ (2010) 6,7-Dihydroxy-4-phenylcoumarin as inhibitor of aldose reductase 2. Bioorg Med Chem Lett 20:5630–5633

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Kim DY, Kim YC, Jung JW, Lee SJ, Yoon BH, Cheong JH, Kim YS, Kang SS, Ko KH, Ryu JH (2007) Nodakenin, a coumarin compound, ameliorates scopolamine-induced memory disruption in mice. Life Sci 80:1944–1950

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Kim CS, Lee YM, Sohn E, Jo KH, Shin SD, Kim JS (2013) Scopoletin inhibits rat aldose reductase activity and cataractogenesis in galactose-fed rats. Evid Based Complement Altern Med 2013:1–8

    Google Scholar 

  • Kim CS, Kim JH, Lee YM, Sohn E, Kim JS (2016) Esculetin, a coumarin derivative, inhibits aldose reductase activity in vitro and cataractogenesis in galactose-fed rats. Biomol Ther 24:178–183

    Article  CAS  Google Scholar 

  • Kim SB, Hwang SH, Wang Z, Yu JM, Lim SS (2017) Rapid identification and isolation of inhibitors of rat lens aldose reductase and antioxidant in Maackia amurensis. BioMed Res Int 2017:1–10

    Google Scholar 

  • Kinoshita T, Miyake H, Fujii T, Takakura S, Goto T (2002) The structure of human recombinant aldose reductase complexed with the potent inhibitor zenarestat. Acta Crystallogr D 58:622–626

    Article  PubMed  Google Scholar 

  • Kontogiorgis C, Detsi A, Hadjipavlou-Litina D (2012) Coumarin-based drugs: a patent review (2008–present). Expert Opin Ther Patents 22:437–454

    Article  CAS  Google Scholar 

  • Lee SW, Kim CS, Cho SH, Chun HS, Kim JK, Kim DK (2009) The effects of Angelica decursiva extract in the inhibition of cell proliferation and in the induction of apoptosis in osteogenic sarcoma cells. J Med Plant Res 3:241–245

    Google Scholar 

  • Leu YL, Chen YW, Yang CY, Huang CF, Lin GH, Tsai KS, Yang RS, Liu SH (2009) Extract isolated from Angelica hirsutiflora with insulin secretagogue activity. J Ethnopharmacol 123:208–212

    Article  CAS  PubMed  Google Scholar 

  • Lim HJ, Lee JH, Choi JS, Lee SK, Kim YS, Kim HP (2014) Inhibition of airway inflammation by the roots of Angelica decursiva and its constituent, columbianadin. J Ethnopharmacol 155:1353–1361

    Article  CAS  PubMed  Google Scholar 

  • Makita Z, Radoff S, Rayfield EJ, Yang ZH, Skolnik E, Delaney V, Friedman EA, Cerami A, Vlassara HN (1993) Advanced glycosylation end products in patients with diabetic nephropathy. N Eng J Med 325:836–842

    Article  Google Scholar 

  • Manivannan A, Soundararajan P, Park YG, Sakkiah S, Jeong BR (2015) Binding mode investigation of polyphenols from Scrophularia targeting human aldose reductase using molecular docking and molecular dynamics simulations. J Chem 2015:1–12

    Article  Google Scholar 

  • Pari L, Rajarajeswari N (2009) Efficacy of coumarin on hepatic key enzymes of glucose metabolism in chemical induced type 2 diabetic rats. Chem Biol Interact 181:292–296

    Article  CAS  PubMed  Google Scholar 

  • Peyroux J, Sternberg M (2006) Advanced glycation endproducts (AGEs): pharmacological inhibition in diabetes. Pathol Biol 54:405–419

    Article  CAS  PubMed  Google Scholar 

  • Ramesh B, Pugalendi KV (2007) Effect of umbelliferone on tail tendon collagen and haemostatic function in streptozotocin diabetic rats. Basic Clin Pharmacol Toxicol 101:73–77

    Article  CAS  PubMed  Google Scholar 

  • Rehman S, Ikram M, Baker RJ, Zubair M, Azad E, Min S, Riaz K, Mok KH, Rehman SU (2013) Synthesis, characterization, in vitro antimicrobial, and U2OS tumoricidal activities of different coumarin derivatives. Chem Cent J 7:68–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarkanj B, Molnar M, Cacic M, Gille L (2013) 4-Methyl-7-hydroxycoumarin antifungal and antioxidant activity enhancement by substitution with thiosemicarbazide and thiazolidinone moieties. Food Chem 139:488–495

    Article  CAS  PubMed  Google Scholar 

  • Sarkhail P (2014) Traditional uses phytochemistry and pharmacological properties of the genus Peucedanum: a review. J Ethnopharmacol 156:235–270

    Article  CAS  PubMed  Google Scholar 

  • Singh VP, Bali A, Singh N, Jaggi AS (2014) Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol 18:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srikanth V, Maczurek A, Phan T, Steele M, Westcott B, Juskiw D, Munch G (2011) Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiol Aging 32:763–777

    Article  CAS  PubMed  Google Scholar 

  • Srivastava SK, Ramana KV, Bhatnagar A (2005) Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocr Rev 26:380–392

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi M, Yamagishi S (2008) Possible involvement of advanced glycation end-products (AGEs) in the pathogenesis of Alzheimer’s disease. Curr Pharm Des 14:973–978

    Article  CAS  PubMed  Google Scholar 

  • Thiraphatthanavong P, Wattanathorn J, Muchimapura S, Thukham-mee W, Wannanon P, Tong-un T, Suriharn B, Lertrat K (2014) Preventive effect of Zea mays L. (purple waxy corn) on experimental diabetic cataract. BioMed Res Int. https://doi.org/10.1155/2014/507435

    PubMed  PubMed Central  Google Scholar 

  • Thomas MC, Baynes JW, Thorpe SR, Cooper ME (2005) The role of AGEs and AGE inhibitors in diabetic cardiovascular disease. Curr Drug Targets 6:453–474

    Article  CAS  PubMed  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wada R, Yagihashi S (2005) Role of advanced glycation end products and their receptors in development of diabetic neuropathy. Ann N Y Acad Sci 1043:598–604

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Ling B, Zhang R, Liu Y (2008) Docking and molecular dynamics study on the inhibitory activity of coumarins on aldose reductase. J Phys Chem 112:10033–10040

    Article  CAS  Google Scholar 

  • World Health Organization (2016). http://www.who.int/diabetes/global-report/en/

  • Zhang W, Li Z, Zhou M, Wu F, Hou X, Luo H, Liu H, Han X, Yan G, Ding Z, Li R (2014) Synthesis and biological evaluation of 4-(1,2,3-triazol-1-yl) coumarin derivatives as potential antitumor agents. Bioorg Med Chem Lett 24:799–807

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Islam MN, Ahn BR, Jung HA, Kim BW, Choi JS (2012) In vitro antioxidant and anti-inflammatory activities of Angelica decursiva. Arch Pharm Res 35:179–192

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) and funded by the Ministry of Science, ICT, and Future Planning (2014R1A1A3051684).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyun Ah Jung or Jae Sue Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M.Y., Jung, H.A., Jannat, S. et al. Dihydroxanthyletin-type coumarins from Angelica decursiva that inhibits the formation of advanced glycation end products and human recombinant aldose reductase. Arch. Pharm. Res. 41, 196–207 (2018). https://doi.org/10.1007/s12272-017-0999-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-017-0999-6

Keywords

Navigation