Archives of Pharmacal Research

, Volume 40, Issue 11, pp 1238–1248 | Cite as

Vaccine adjuvants: smart components to boost the immune system

  • Rakesh Bastola
  • Gyubin Noh
  • Taekwang Keum
  • Santosh Bashyal
  • Jo-Eun Seo
  • Jaewoong Choi
  • Yeonsu Oh
  • YoungSik Cho
  • Sangkil Lee


Vaccination is an effective approach to prevent the consequences of infectious diseases. Vaccines strengthen immunity and make individuals resistant to infections with pathogens. Although conventional vaccines are highly immunogenic, they are associated with some safety issues. Subunit vaccines are safe, but they require adjuvants to stimulate the immune system because of their weaker immunogenicity. Adjuvants are entities incorporated into vaccines to increase the immunogenic responses of antigens. They play a crucial role in increasing the potency and efficacy of vaccines. Different adjuvants have different modes of action; therefore, a better understanding of their immunology could provide guidance for the development of novel adjuvants. Numerous studies have been conducted using different types of adjuvants to characterize their potency and safety; however, in practice, only few are used in human or animal vaccines. This review aims to introduce the different modes of action of adjuvants and give insight into the types of adjuvants that possess the greatest potential for adjuvanticity.


Vaccines Adjuvants Modes of action Types of adjuvants 



This research was supported by Technology Development Program (Project No. 316093-2 and Project No. 316094-2) for Bio-industry, Ministry for Agriculture, Food and Rural Affairs, Republic of Korea.

Compliance with ethical standards

Conflict of interest

All the authors declare that they have no conflicts of interest.


  1. Aguilar JC, Rodriguez EG (2007) Vaccine adjuvants revisited. Vaccine 25:3752–3762CrossRefPubMedGoogle Scholar
  2. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8:102CrossRefPubMedPubMedCentralGoogle Scholar
  3. Akira S (2011) Innate immunity and adjuvants. Philos Trans R Soc Lond B 366:2748–2755CrossRefGoogle Scholar
  4. Apostólico JS, Lunardelli VAS, Coirada FC, Boscardin SB, Rosa DS (2016) Adjuvants: classification, modus operandi, and licensing. J Immunol Res 2016:1459394CrossRefPubMedCentralGoogle Scholar
  5. Asif M, Jenkins KA, Hilton LS, Kimpton WG, Bean AGD, Lowenthal JW (2004) Cytokines as adjuvants for avian vaccines. Immunol Cell Biol 82:638–643CrossRefPubMedGoogle Scholar
  6. Aucouturier J, Dupuis L, Ganne V (2001) Adjuvants designed for veterinary and human vaccines. Vaccine 19:2666–2672CrossRefPubMedGoogle Scholar
  7. Awate S, Babiuk LA, Mutwiri G (2013) Mechanisms of action of adjuvants. Front Immunol 4:114CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bayry J, Prabhudas K, Gopalakrishna S, Patil PK, Ramkrishna C, Misra LD, Suryanarayana VVS (1999) Protective immune response to 16 kDa immunoreactive recombinant protein encoding the C-Terminal VP1 portion of foot and mouth disease virus type Asia 1. Microbiol Immunol 43:765–771CrossRefPubMedGoogle Scholar
  9. Bowersock TL, Martin S (1999) Vaccine delivery to animals. Adv Drug Deliv Rev 38:167–194CrossRefPubMedGoogle Scholar
  10. Bungener L, Huckriede A, De Mare A, De Vries-Idema J, Wilschut J, Daemen T (2005) Virosome-mediated delivery of protein antigens in vivo: efficient induction of class I MHC-restricted cytotoxic T lymphocyte activity. Vaccine 23:1232–1241CrossRefPubMedGoogle Scholar
  11. Chroboczek J, Szurgot I, Szolajska E (2014) Virus-like particles as vaccine. Acta Biochim Pol 61:531–539PubMedGoogle Scholar
  12. Coffman RL, Sher A, Seder RA (2010) Vaccine adjuvants: putting innate immunity to work. Immunity 33:492–503CrossRefPubMedPubMedCentralGoogle Scholar
  13. Copland MJ, Rades T, Davies NM, Baird MA (2005) Lipid based particulate formulations for the delivery of antigen. Immunol Cell Biol 83:97–105CrossRefPubMedGoogle Scholar
  14. Cox JC, Coulter AR (1997) Adjuvants-a classification and review of their modes of action. Vaccine 15:248–256CrossRefPubMedGoogle Scholar
  15. Cusi MG, Zurbriggen R, Correale P, Valassina M, Terrosi C, Pergola L, Valensin PE, Glück R (2002) Influenza virosomes are an efficient delivery system for respiratory syncytial virus-F antigen inducing humoral and cell-mediated immunity. Vaccine 20:3436–3442CrossRefPubMedGoogle Scholar
  16. Eldridge JH, Staas JK, Meulbroek JA, Tice TR, Gilley RM (1991) Biodegradable and biocompatible poly (d,l-lactide-co-glycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralizing antibodies. Infect Immun 59:2978–2986PubMedPubMedCentralGoogle Scholar
  17. Fazeli MR, Dinarvand R, Samadi N, Mahboubi A, Ilka H, Sharifzadeh M, Azadi S, Moghanlou A, Mirzaei Salehabady M, Valadkhani M (2008) Aluminum phosphate shows more adjuvanticity than aluminum hydroxide in recombinant hepatitis–B vaccine formulation. DARU 16:143–148Google Scholar
  18. Fontana D, Kratje R, Etcheverrigaray M, Prieto C (2015) Immunogenic virus-like particles continuously expressed in mammalian cells as a veterinary rabies vaccine candidate. Vaccine 33:4238–4246CrossRefPubMedGoogle Scholar
  19. Garçon N, Leroux-Roels G, Cheng WF (2011) Vaccine adjuvants. Perspect Vaccinol 1:89–113CrossRefGoogle Scholar
  20. Gerdts V (2015) Adjuvants for veterinary vaccines-types and modes of action. Berl Münch Tierärztliche Wochenschr 128:456–463Google Scholar
  21. Gregoriadis G, Gursel I, Gursel M, McCormack B (1996) Liposomes as immunological adjuvants and vaccine carriers. J Control Release 41:49–56CrossRefGoogle Scholar
  22. Gupta RK (1998) Aluminum compounds as vaccine adjuvants. Adv Drug Deliv Rev 32:155–172CrossRefPubMedGoogle Scholar
  23. Gupta RK, Siber GR (1995) Adjuvants for human vaccines-current status, problems and future prospects. Vaccine 13:1263–1276CrossRefPubMedGoogle Scholar
  24. Gupta RK, Relyveld EH, Lindblad EB, Bizzini B, Ben-Efraim S, Gupta CK (1993) Adjuvants-a balance between toxicity and adjuvanticity. Vaccine 11:293–306CrossRefPubMedGoogle Scholar
  25. Haghparast A, Zakeri A, Ebrahimian M, Ramezani M (2016) Targeting pattern recognition receptors (PRRs) in nano-adjuvants: current perspectives. Curr Bionanotechnol 2:47–59CrossRefGoogle Scholar
  26. InvivoGen (2011) Vaccine adjuvants–review. Accessed 25 Jan 2017
  27. Katz JM, Lu X, Young SA, Galphin JC (1997) Adjuvant activity of the heat-labile enterotoxin from enterotoxigenic Escherichia coli for oral administration of inactivated influenza virus vaccine. J Infect Dis 175:352–363CrossRefPubMedGoogle Scholar
  28. Kersten GFA, Crommelin DJA (1995) Liposomes and ISCOMS as vaccine formulations. Biochem Biophys Acta 1241:117–138PubMedGoogle Scholar
  29. Kersten GFA, Crommelin DJA (2003) Liposomes and ISCOMs. Vaccine 21:915–920CrossRefPubMedGoogle Scholar
  30. Khan R, Irchhaiya R (2016) Niosomes: a potential tool for novel drug delivery. J Pharm Investig 46:195–204CrossRefGoogle Scholar
  31. Kleinstein SH, Seiden PE (2000) Simulating the immune system. Comput Sci Eng 2:69–77CrossRefGoogle Scholar
  32. Leach S, Clements JD, Kaim J, Lundgren A (2012) The adjuvant double mutant Escherichia coli heat labile toxin enhances IL-17A production in human T cells specific for bacterial vaccine antigens. PLoS ONE 7:e51718CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lee S, Nguyen MT (2015) Recent advances of vaccine adjuvants for infectious diseases. Immune Netw 15:51–57CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lee JB, Jang JE, Song MK, Chang J (2009) Intranasal delivery of cholera toxin induces Th17-dominated T-cell response to bystander antigens. PLoS ONE 4:e5190CrossRefPubMedPubMedCentralGoogle Scholar
  35. Leroux-Roels G (2010) Unmet needs in modern vaccinology adjuvants to improve the immune response. Vaccine 28S:C25–C36CrossRefGoogle Scholar
  36. Lövgren Bengtsson K, Morein B, Osterhaus ADME (2011) ISCOM technology-based Matrix M™ adjuvant: success in future vaccines relies on formulation. Expert Rev Vaccines 10:401–403CrossRefPubMedGoogle Scholar
  37. Mbow ML, De Gregorio E, Valiante NM, Rappuoli R (2010) New adjuvants for human vaccines. Curr Opin Immunol 22:411–416CrossRefPubMedGoogle Scholar
  38. Morel S, Didierlaurent A, Bourguignon P, Delhaye S, Baras B, Jacob V, Planty C, Elouahabi A, Harvengt P, Carlsen H, Kielland A, Chomez P, Garcon N, Van Mechelen M (2011) Adjuvant system AS03 containing α-tocopherol modulates innate immune response and leads to improved adaptive immunity. Vaccine 29:2461–2473CrossRefPubMedGoogle Scholar
  39. Nakanishi T, Kunisawa J, Hayashi A, Tsutsumi Y, Kubo K, Nakagawa S, Nakanishi M, Tanaka K, Mayumi T (1999) Positively charged liposome functions as an efficient immunoadjuvant in inducing cell-mediated immune response to soluble proteins. J Control Release 61:233–240CrossRefPubMedGoogle Scholar
  40. Noad R, Roy P (2003) Virus-like particles as immunogens. Trends Microbiol 11:438–444CrossRefPubMedGoogle Scholar
  41. Norton EB, Lawson LB, Freytag LC, Clements JD (2011) Characterization of a mutant Escherichia coli heat-labile toxin, LT (R192G/L211A), as a safe and effective oral adjuvant. Clin Vaccine Immunol 18:546–551CrossRefPubMedPubMedCentralGoogle Scholar
  42. Norton EB, Bauer DL, Weldon WC, Oberste MS, Lawson LB, Clements JD (2015) The novel adjuvant dmLT promotes dose sparing, mucosal immunity and longevity of antibody responses to the inactivated polio vaccine in a murine model. Vaccine 33:1909–1915CrossRefPubMedGoogle Scholar
  43. O’Hagan DT, De Gregorio E (2009) The path to a successful vaccine adjuvant-‘the long and winding road’. Drug Discov Today 14:541–551CrossRefPubMedGoogle Scholar
  44. O’Hagan DT (2007) New generation vaccine adjuvants. Encycl Life Sci. doi: 10.1002/9780470015902.a0020177 Google Scholar
  45. Ottsjö LS, Flach CF, Clements J, Holmgren J, Raghavan S (2013) A double mutant heat-labile toxin from Escherichia coli, LT (R192G/L211A), is an effective mucosal adjuvant for vaccination against Helicobacter pylori infection. Infect Immun 81:1532–1540CrossRefGoogle Scholar
  46. Park JY, Kim MG, Shim G, Oh YK (2016) Lipid-based antigen delivery systems. J Pharm Investig 46:295–304CrossRefGoogle Scholar
  47. Pashine A, Valiante NM, Ulmer JB (2005) Targeting the innate immune response with improved vaccine adjuvants. Nat Med 11:S63–S68CrossRefPubMedGoogle Scholar
  48. Petrovsky N (2013) Vaccine adjuvant safety: the elephant in the room. Expert Rev Vaccines 12:715–717CrossRefPubMedGoogle Scholar
  49. Petrovsky N, Aguilar JC (2004) Vaccine adjuvants: current state and future trends. Immunol Cell Biol 82:488–496CrossRefPubMedGoogle Scholar
  50. Rimmelzwaan GF, Baars M, Van Beek R, Van Amerongen G, Lövgren Bengtsson K, Claas ECJ, Osterhaus ADME (1997) Induction of protective immunity against influenza virus in a macaque model: comparison of conventional and iscom vaccines. J Gen Virol 78:757–765CrossRefPubMedGoogle Scholar
  51. Schijns VEJC, Lavelle EC (2011) Trends in vaccine adjuvants. Expert Rev Vaccines 10:539–550CrossRefPubMedGoogle Scholar
  52. Schultze V, D’Agosto V, Wack A, Novicki D, Zorn J, Hennig R (2008) Safety of MF59™ adjuvant. Vaccine 26:3209–3222CrossRefPubMedGoogle Scholar
  53. Schwendener RA (2014) Liposomes as vaccine delivery systems: a review of the recent advances. Ther Adv Vaccines 2:159–182CrossRefPubMedPubMedCentralGoogle Scholar
  54. Seubert A, Monaci E, Pizza M, O’Hagan DT, Wack A (2008) The adjuvants aluminum hydroxide and MF59 induce monocyte and granulocyte chemoattractants and enhance monocyte differentiation toward dendritic cells. J Immunol 180:5402–5412CrossRefPubMedGoogle Scholar
  55. Shah RR, Brito LA, O’Hagan DT, Amiji MM (2015) Emulsions as vaccine adjuvants. In: Foged C, Rades T, Perrie Y, Hook S (eds) Subunit vaccine delivery. Springer, New York, pp 59–76Google Scholar
  56. Simmons CP, Mastroeni P, Fowler R, Ghaem-maghami M, Lycke N, Pizza M, Rappuoli R, Dougan G (1999) MHC class I-restricted cytotoxic lymphocyte responses induced by enterotoxin-based mucosal adjuvants. J Immunol 163:6502–6510PubMedGoogle Scholar
  57. Singh M, O’Hagan DT (2003) Recent advances in veterinary vaccine adjuvants. Int J Parasitol 33:469–478CrossRefPubMedGoogle Scholar
  58. Sivakumar SM, Safhi MM, Kannadasan M, Sukumaran N (2011) Vaccine adjuvants-current status and prospects on controlled release adjuvancity. Saudi Pharm J 19:197–206CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sjölander A, Drane D, Maraskovsky E, Scheerlinck JP, Suhrbier A, Tennent J, Pearse M (2001) Immune responses to ISCOM® formulations in animal and primate models. Vaccine 19:2661–2665CrossRefPubMedGoogle Scholar
  60. Skidmore BJ, Chiller JM, Morrison DC, Weigle WO (1975) Immunologic properties of bacterial lipopolysaccharide (LPS): correlation between the mitogenic, adjuvant, and immunogenic activities. J Immunol 114:770–775PubMedGoogle Scholar
  61. Skwarczynski M, Toth I (2016) Peptide-based synthetic vaccines. Chem Sci 7:842–854CrossRefPubMedGoogle Scholar
  62. Smith RE, Donachie AM, Mowat AM (1998) Immune stimulating complexes as mucosal vaccines. Immunol Cell Biol 76:263–269CrossRefPubMedGoogle Scholar
  63. Smith DM, Simon JK, Baker JR Jr (2013) Applications of nanotechnology for immunology. Nat Rev Immunol 13:592–605CrossRefPubMedGoogle Scholar
  64. Song X, Bao S, Wu L, Hu S (2009) Ginseng stem-leaf saponins (GSLS) and mineral oil act synergistically to enhance the immune responses to vaccination against foot-and-mouth disease in mice. Vaccine 27:51–55CrossRefPubMedGoogle Scholar
  65. Spickler AR, Roth JA (2003) Adjuvants in veterinary vaccines: modes of action and adverse effects. J Vet Intern Med 17:273–281CrossRefPubMedGoogle Scholar
  66. Tritto E, Mosca F, De Gregorio E (2009) Mechanism of action of licensed vaccine adjuvants. Vaccine 27:3331–3334CrossRefPubMedGoogle Scholar
  67. Trovato M, De Berardinis P (2015) Novel antigen delivery systems. World J Virol 4:156–168CrossRefPubMedPubMedCentralGoogle Scholar
  68. Vogel FR (2000) Improving vaccine performance with adjuvants. Clin Infect Dis 30:S266–S270CrossRefPubMedGoogle Scholar
  69. Young SL, Wilson M, Wilson S, Beagley KW, Ward V, Baird MA (2006) Transcutaneous vaccination with virus-like particles. Vaccine 24:5406–5412CrossRefPubMedGoogle Scholar
  70. Zhao L, Seth A, Wibowo N, Zhao CX, Mitter N, Yu C, Middelberg APJ (2014) Nanoparticle vaccines. Vaccine 32:327–337CrossRefPubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2017

Authors and Affiliations

  • Rakesh Bastola
    • 1
  • Gyubin Noh
    • 1
  • Taekwang Keum
    • 1
  • Santosh Bashyal
    • 1
  • Jo-Eun Seo
    • 1
  • Jaewoong Choi
    • 1
  • Yeonsu Oh
    • 2
  • YoungSik Cho
    • 1
  • Sangkil Lee
    • 1
  1. 1.College of PharmacyKeimyung UniversityDaegu 42601Republic of Korea
  2. 2.Department of Veterinary Pathology, College of Veterinary Medicine and Institute of Veterinary ScienceKangwon National UniversityChuncheon 24341Republic of Korea

Personalised recommendations