Advertisement

Archives of Pharmacal Research

, Volume 40, Issue 11, pp 1278–1286 | Cite as

Isorhamnetin derivatives and piscidic acid for hypercholesterolemia: cholesterol permeability, HMG-CoA reductase inhibition, and docking studies

  • Asma Ressaissi
  • Nebil Attia
  • Pedro Luis Falé
  • Rita Pacheco
  • Bruno L. Victor
  • Miguel Machuqueiro
  • Maria Luísa M. Serralheiro
Research Article

Abstract

Bioactive compounds, such as isorhamnetin and piscidic acid, were obtained from decoctions of cladodes (stem pads from Opuntia ficus-indica). The effect of these phenolic compounds, in a fiber-free extract, were evaluated as inhibitors of cholesterol permeation through a Caco-2 cell monolayer and as 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. A reduction of 38% in cholesterol permeation through the Caco-2 cell monolayer was obtained, and the phenolic compounds all permeated between 6 and 9%. A mixture of these compounds showed an IC50 of 20.3 μg/mL as an enzyme inhibitor, whereas piscidic acid alone showed an IC50 of 149.6 μg/mL; this was slightly outperformed by the isorhamnetin derivatives. Docking studies confirmed that both piscidic acid and isorhamnetin derivatives, present in the decoction, could adequately bind to the enzyme active site. These results reveal that O. ficus-indica, and cladodes derived there from, is a promising plant for use in the development of new functional foods and pharmaceutical products.

Keywords

Isorhamnetin derivatives Cholesterol permeability Cell lines HMG-CoA reductase Docking studies Piscidic acid 

Notes

Acknowledgements

We acknowledge financial support from the Fundação para a Ciência e a Tecnologia through Project UID/MULTI/00612/2013.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

References

  1. Adaramoye OA, Akintayo O, Achem J, Fafunso MA (2008) Lipid-lowering effects of methanolic extract of Vernonia amygdalina leaves in rats fed on high cholesterol diet. Vasc Health Risk Manag 4:235–241CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arantes AA, Falé PL, Costa LCB, Pacheco R, Ascensão L, Serralheiro ML (2016) Inhibition of HMG-CoA reductase activity and cholesterol permeation through Caco-2 cells by caffeoylquinic acids from Vernonia condensata leaves. Rev Bras Farmacogn 26:738–743CrossRefGoogle Scholar
  3. Asensi M, Ortega A, Mena S, Feddi F, Estrela JM (2011) Natural polyphenols in cancer therapy. Crit Rev Clin Lab Sci 48:197–216CrossRefPubMedGoogle Scholar
  4. Awortwe C, Fasinu PS, Rosenkranz B (2014) Application of Caco-2 cell line in herb-drug interaction studies: current approaches and challenges. J Pharm Pharm Sci 17:1–19CrossRefPubMedPubMedCentralGoogle Scholar
  5. Benayada Z, Martinez-Villaluengaa C, Friasa J, Gomez-Cordovesa C, Es-Safib NE (2014) Phenolic composition, antioxidant and anti-inflammatory activities of extracts from Moroccan Opuntia ficus-indica flowers obtained by different extraction methods. Ind Crops Prod 62:412–420CrossRefGoogle Scholar
  6. Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108CrossRefPubMedGoogle Scholar
  7. Crowe A, Wright C (2012) The impact of P-glycoprotein mediated efflux on absorption of 11 sedating and less-sedating antihistamines using Caco-2 monolayers. Xenobiotica 42:538–549CrossRefPubMedGoogle Scholar
  8. Décordé K, Teissédre PL, Auger C, Cristol JP, Rouanet JM (2008) Phenolics from purple grape, apple, purple grape juice and apple juice prevent early atherosclerosis induced by an atherogenic diet in hamsters. Mol Nutr Food Res 52:400–407CrossRefPubMedGoogle Scholar
  9. Falé PL, Ascensão L, Serralheiro ML (2013a) Effect of luteolin and apigenin on rosmarinic acid bioavailability in Caco-2 cell monolayers. Food Funct 4:426–431CrossRefPubMedGoogle Scholar
  10. Falé PL, Ferreira C, Maruzzella F, Florêncio MH, Frazão FN, Serralheiro MLM (2013b) Evaluation of cholesterol absorption and biosynthesis by decoctions of Annona cherimola leaves. J Ethnopharmacol 150:718–723CrossRefPubMedGoogle Scholar
  11. Falé PL, Ferreira C, Rodrigue AM, Frazão FN, Serralheiro MLM (2014) Studies on the molecular mechanism of cholesterol reduction by Fraxinus angustifolia, Peumus boldus, Cynara cardunculus and Pterospartum tridentatum infusions. J Med Plants Res 8:9–17CrossRefGoogle Scholar
  12. FDA (2012) Guidance for industry. Drug interaction studies—study design, data analysis, implications for dosing, and labeling recommendations. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm. Accessed 23 Feb 2017
  13. Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430CrossRefPubMedGoogle Scholar
  14. Habauzit V, Morand C (2012) Evidence for a protective effect of polyphenols-containing foods on cardiovascular health: an update for clinicians. Ther Adv Chronic Dis 3:87–106CrossRefPubMedPubMedCentralGoogle Scholar
  15. Harris R, Olson AJ, Goodsell DS (2008) Automated prediction of ligand-binding sites in proteins. Proteins Struct Funct Bioinform 70:1506–1517CrossRefGoogle Scholar
  16. Istvan ES, Deisenhofer J (2001) Structural mechanism for statin inhibition of HMG-COA reductase. Science 292:1160–1164CrossRefPubMedGoogle Scholar
  17. Li D, Gui J, Li Y, Feng L, Han X, Sun Y, Sun T, Chen Z, Cao Y, Zhang Y, Zhou L, Hu X, Ren Y, Wan J (2012) Structure-based design and screen of novel inhibitors for class II 3-hydroxy-3-methylglutaryl coenzyme A reductase from Streptococcus Pneumoniae. J Chem Inf Model 52:1833–1841CrossRefPubMedGoogle Scholar
  18. Liao JK, Laufs U (2005) Pleiotropic effects of statins. Pharmacol Toxicol 45:89–118Google Scholar
  19. Loke WM, Proudfoot JM, Hodgson JM, McKinley AJ, Hime N, Magat M, Stocker R, Croft KD (2010) Specific dietary polyphenols attenuate atherosclerosis in apolipoprotein E-knockout mice by alleviating inflammation and endothelial dysfunction. Arterioscler Thromb Vasc Biol 30:749–757CrossRefPubMedGoogle Scholar
  20. Mehler EL, Solmajer T (1991) Electrostatic effects in proteins: comparison of dielectric and charge models. Protein Eng Des Sel 4:903–910CrossRefGoogle Scholar
  21. Ming X, Knight BM, Thakker DR (2011) Vectorial transport of fexofenadine across Caco-2 cells: involvement of apical uptake and basolateral efflux transporters. Mol Pharm 8:1677–1686CrossRefPubMedGoogle Scholar
  22. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. J Immunol Methods 6:55–63CrossRefGoogle Scholar
  23. Mozzicafreddo M, Cuccioloni M, Eleuteri AM, Angeletti M (2010) Rapid reverse phase-HPLC assay of HMG-CoA reductase activity. J Lipid Res 51:2460–2463CrossRefPubMedPubMedCentralGoogle Scholar
  24. Nekohashi M, Ogawa M, Ogihara T, Nakazawa K, Kato H, et al (2014) Luteolin and quercetin affect the cholesterol absorption mediated by epithelial cholesterol transporter Niemann–Pick C1-Like 1 in Caco-2 cells and rats. PLoS ONE 9(5):e97901. doi: 10.1371/journal.pone.0097901 CrossRefGoogle Scholar
  25. Nurcahyanti ADR, Michael W (2016) l-Canavanine potentiates the cytotoxicity of doxorubicin and cisplatin in arginine deprived human cancer cells. PeerJ. doi: 10.7717/1542 PubMedPubMedCentralGoogle Scholar
  26. Nutescu EA, Nancy L, Shapiro NL (2003) Ezetimibe: a selective cholesterol absorption inhibitor. Pharmacotherapy 23:1463–1474CrossRefPubMedGoogle Scholar
  27. Okonogi S, Duangrat C, Anuchpreeda S, Tachakittirungrod S, Chowwanapoonpohn S (2007) Comparison of antioxidant capacities and cytotoxicities of certain fruit peels. Food Chem 103:839–846CrossRefGoogle Scholar
  28. Ozeki K, Kato M, Sakurai Y, Ishigai M, Kudo T, Ito K (2015) Evaluation of the appropriate time range for estimating the apparent permeability coefficient (Papp) in a transcellular transport study. Int J Pharm 495:963–971Google Scholar
  29. Qiang Z, Ye Z, Hauck C, Murphy PA, McCoy JA, Widrlechner MP, Reddy MB, Hendrich S (2011) Permeability of rosmarinic acid in Prunella vulgaris and ursolic acid in Salvia officinalis extracts across Caco-2 cell monolayers. J Ethnopharmacol 137:1107–1112CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ressaissi A, Attia N, Falé PLV, Pacheco R, Teixeira VH, Machuqueiro M, Borges C, Serralheiro MLM (2016) Aqueous extracts from nopal (Opuntia Ficus-Indica): antiacetylcholinesterase and antioxidant activity from phenolic bioactive compounds. Int J Green Herb Chem 5:337–348Google Scholar
  31. Sané AT, Sinnett D, Delvin E, Bendayan M, Marcil V, Ménard D, Beaulieu JF, Levy E (2006) Localization and role of NPC1L1 in cholesterol absorption in human intestine. J Lipid Res 47:2112–2120CrossRefPubMedGoogle Scholar
  32. Scalbert A, Manach C, Morand C, Rémésy C, Jiménez L (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45:287–306CrossRefPubMedGoogle Scholar
  33. Smetanová L, Štětinová V, Svoboda Z, Květina J (2011) Caco-2 cells, biopharmaceutics classification system (BCS) and biowaiver. Acta Medica (Hradec Kralove) 54:3–8CrossRefGoogle Scholar
  34. Solis FJ, Wets RJB (1981) Minimization by random search techniques. Math Oper Res 6:19–30CrossRefGoogle Scholar
  35. Teixeira VH, Vila-Viçosa D, Reis PBPS, Machuqueiro M (2016) pKa values of titrable amino acids at the water/membrane interface. J Chem Theory Comput 12:930–934CrossRefPubMedGoogle Scholar
  36. Vazquez-Manjarrez N, Guevara M, Tovar A, Flores A, Ayala B, Radyx M, Medina I, Aguilar M, Jimenez E, Orozco X, Castaño-Jameson M, Torres N (2014) Effect of a dietary portfolio (nopal, soy, oat, chia seed and inulin) on lipoprotein subclasses and LDL-cholesterol in Mexican subjects with hypercholesterolemia. FASEB J 28(1 Supplement):1035.8Google Scholar
  37. Vinson JA, Dabbagh YA, Serry MM, Jang J (1995) Plant flavonoids, especially tea flavonols, are powerful antioxidants using an in vitro oxidation model for heart disease. J Agric Food Chem 43:2800–2802CrossRefGoogle Scholar
  38. Visioli F, Davalos A (2011) Polyphenols and cardiovascular disease: a critical summary of the evidence. Mini Rev Med Chem 11:1186–1190PubMedGoogle Scholar
  39. Visioli F, De La Lastra CA, Andres-Lacueva C, Aviram M, Calhau C, Cassano A, D’Archivio M, Faria A, Favé G, Fogliano V, Llorach R, Vitaglione P, Zoratti M, Edeas M (2011) Polyphenols and human health: a prospectus. Crit Rev Food Sci Nutr 51:524–546CrossRefPubMedGoogle Scholar
  40. Volpe DA (2011) Drug-permeability and transporter assays in Caco-2 and MDCK cell lines. Future Med Chem 3:2063–2077CrossRefPubMedGoogle Scholar
  41. Yao L, Heubi JE, Buckle DD, Fierra H, Setchell KD, Granholm NA, Tso P, Hui DY, Woollet LA (2002) Separation of micelles and vesicles within lumenal aspirates from healthy humans: solubilization of cholesterol after a meal. J Lipid Res 43:654–660PubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2017

Authors and Affiliations

  1. 1.Centro de Química e Bioquímica, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  2. 2.UR11ES33‘Integrated Physiology’, Faculty of Sciences of BizerteCarthage UniversityTunisTunisia
  3. 3.Departamento de Química e Bioquímica, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  4. 4.Área Departamental de Engenharia QuímicaInstituto Superior de Engenharia de LisboaLisbonPortugal

Personalised recommendations